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This work presents a numerical algorithm for the solution of fluid dynamics prob-
lems with moderate to high speed flow in three dimensions. Cartesian geometry is
chosen owing to the fact that in this coordinate system no curvature terms are present
that break the conservation law structure of the fluid equations. Written in Lagrangian
form, these equations are discretized utilizing compatible, control volume differenc-
ing with a staggered-grid placement of the spatial variables. The concept of “compat-
ibility” means that the forces used in the momentum equation to advance velocity are
also incorporated into the internal energy equation so that these equations together
define the total energy as a quantity that is exactly conserved in time in discrete form.
Multiple pressures are utilized in each zone; they produce forces that resist spurious
vorticity generation. This difficulty can severely limit the utility of the Lagrangian
formulation in two dimensions and make this representation otherwise virtually use-
less in three dimensions. An edge-centered artificial viscosity whose magnitude is
regulated by local velocity gradients is used to capture shocks. The particular diffi-
culty of exactly preserving one-dimensional spherical symmetry in three-dimensional
geometry is solved. This problem has both practical and pedagogical significance.
The algorithm is suitable for both structured and unstructured grids. Limitations that
symmetry preservation imposes on the latter type of grids are delineated.
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1. INTRODUCTION

Herein is presented a generalization from two dimensions (2D) to three dimensions (3D)
of a numerical method for the solution of the equations of fluid dynamics in Lagrangian
form that is suitable for the simulation of shock wave dynamics and subsonic, but still
compressible, flow speeds. This work is an extension to 3D of the 2D methodology that
has been published in four previous papers [1–4]. The framework in terms of which this
numerical algorithm is cast is termed “compatible” control volume differencing, as espoused
in [1, 5]. The basic idea is that difference operators, such as gradient and divergence, that
are used to compute force and work should have to the extent possible the same properties
in discrete form as they do in continuum form (for example, negative adjointness). If this is
true, then the derivation of other properties, such as conservation of total energy, follow by
the same logic in the discrete case as in the continuum one. However, this idea can be made
more encompassing in that the above requirements are contained as a subset of what we refer
to as “general compatibility.” In this case forces can be specified in any manner whatsoever,
and the work done by these forces can still be calculated by a generic prescription such
that conservation of total energy is always obeyed. This allows for a generalization of the
type of forces that can be specified: in particular, artificial viscosity forces [4], and subzonal
pressure forces [3]. The Lagrangian formulation of the fluid equations is a powerful adaptive
description in that the grid automatically adjusts to follow the moving fluid. The inclusion of
an artificial viscosity that is specified only in discrete form, and in conjunction with forces
derived from multiple pressures in a zone, allows an accurate and very robust numerical
algorithm to be constructed in 3D, as is demonstrated.

A more specific issue that is central in this paper is the development of an algorithm that
will preserve perfect one-dimensional (1D) spherical symmetry in 3D Cartesian geometry.
This is of crucial importance if meaningful 3D perturbation studies are to be performed with
respect to 1D spherical problems. This is a heretofore unsolved numerical difficulty in 3D;
the specified solution forms the major part of this work. A precise definition of this problem
is first given, and a solution in terms of an appropriate modification of the surface vectors
that define control volume differencing is constructed. This is based loosely on previous
work [2], but is a significantly new and novel extension.

This paper presents only enough of the material in the first four works cited to make
it readable and complete. Section 2 gives the essentials of the form of control volume
differencing that we utilize in 3D. This underpins all that follows; the important concepts
of a corner mass and a corner force are briefly reviewed. Section 3 gives a discussion of the
problem of preserving one-dimensional spherical symmetry in 3D. The kinds of grids on
which 1D spherical symmetry can, in principle, be expected to be preserved are discussed.
How the gradient operator must be modified from that used in control volume differencing
in order that spherical symmetry be preserved is presented in Section 4. Section 5 details
how forces are to be discretized to produce a scheme that is both robust and accurate in
three dimensions, and preserves 1D spherical symmetry when present, without imposing
it when it is not. How this symmetry correction can be efficiently automated so that the
underlying control volume scheme is obtained when symmetry is not present is discussed
in Section 6. Numerical results are given in Section 7 that demonstrate the effectiveness of
the algorithm. This is followed by some final conclusions and an appendix that details the
calculation of strain rates.
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2. COMPATIBLE CONTROL VOLUME DIFFERENCING, THREE DIMENSIONS

While the ideas and consequences of compatible, control volume differencing on a stag-
gered spatial grid have been given in depth elsewhere [1, 3], the essentials that are needed
to frame our discussion are briefly presented in the 3D context. The most basic concepts on
a spatially staggered grid, where pressure, density, and internal energy are defined in zone
centers, and coordinate position and velocity at the grid points that circumscribe the zones,
are that of a corner mass and a corner force. We first define Lagrangian masses by means
of the corner mass; corner forces are introduced last.

The corner mass is determined at the initial time by multiplying the zone density by the
corner volume. In 2D Cartesian geometry a corner volume is specified as the area delineated
by a grid point, the center point of the zone of which it is a part, and the midpoints of the
two coordinate lines that intersect the grid point and also form the sides of the given zone.
In Fig. 1 the quadrilateral specified by the pointsabdeais a corner area (volume in 3D).
The mass inside this volume is the corner mass; we denote the corner mass asmp

z where the
integer indicesz andp denote the zone and point, respectively, with which it is associated.
These two indices range over all zones and points of the grid. We definemp

z =mz
p, but

always sum the corner mass with respect to the lower index. Now the zonal massMz (the
mass inside zonez) and the nodal massMp (the mass associated with grid pointp) are
defined in terms of the corner mass as

Mz=
∑

p

mz
p, Mp=

∑
z

mp
z , (1)

FIG. 1. Planar slice of a 3D logical grid in Cartesian geometry that supports 1D spherically symmetric initial
conditions. Quadrilateralabdeais a corner area (volume in 3D). Indexm denotes third dimensionz.
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FIG. 2. Tetrahedral decomposition of a hexahedron, used to construct coordinate-line mesh (EA’s), median
mesh (ES’s), and corner volumes.

where in the first instance we sum all corner masses with the same indexz, and in the second
we sum all corner masses with the same indexp.

In order to define the corner volume in 2D we must define three auxiliary points: the
midpoints of two coordinate lines, and the center point of the zone that is always taken to
have coordinates that are the arithmetic average of those that define the zone. In addition,
these points are connected by straight lines. (This can be relaxed, as in [6].) However, in
3D not only must appropriate auxiliary points be defined, but surfaces must be fit through
more than three points (therefore, not coplanar) in order to compute the surfaces of the zone
volumes. The algorithm used here to calculate both volumes and surface area vectors is to
tetrahedralize polyhedra of arbitrary order so that the volume of any problem domain can be
formed in a general manner on an unstructured grid [5]. For concreteness this is illustrated
for the hexahedral zone shown in Fig. 2.

A hexahedral zone is divided into 24 tetrahedra, with two tetrahedra associated with each
of 12 edges. One of these tetrahedra is shown in Fig. 2 as described by the pointsabcd.
The zone center pointc is defined as the average of the coordinates of the eight points that
define the hexahedron; the face center pointd is defined as the average of the coordinates
of the four points that define a hexahedral face. This tetrahedron is exactly bisected to form
one with half the original volume as given by pointsab′cd. This latter tetrahedron is used
to compute the following quantities: the vectorES as the outward normal to the plane of
pointsb′, c, d and with the area of this triangle as its magnitude, the vectorEA as the outward
normal to the plane of pointsa, b′, d, or b, d, b′, and with magnitude of the associated
and equal triangular areas. The vectorEShas added to it another vector from the additional
tetrahedron located above the one shown (it also contains pointsa, b, c) to form the vector
defined asESba, which is the median mesh vector between pointsa andb of zonez. There
are 12 median mesh vectors corresponding to the 12 edges of a hexahedral zone. The vector
EA forms one of the two vector pieces that make up the lower outward coordinate-line mesh

vectors of the lower face of pointsa and b of zonez. For a hexahedral zone there are
four such vectors for each of the six faces of a hexahedron, or three vectors from the set
EAi , i = 1 · · ·24, allocated to each point of zonez. (In 2D there are 4 median mesh vectors
ESi , and 8 coordinate-line mesh vectorsEAi , for a quadrilateral zone; one of each is shown in
Fig. 1. The volume of tetrahedronab′cd is found asESba · b′a→/3, whereb′a→ is the vector from
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point a to pointb′. This volume is added to the corner volume of both pointsa andb. For
a hexahedron the corner volume thus consists of two such contributions from each of the
three edges associated with every point. Therefore, after the 24 tetrahedra of a hexahedral
zone are computed as detailed, the median mesh vectors, coordinate-line mesh vectors, and
corner volumes are known. (The zone volume is found simply as the sum of all of its corner
volumes.) The corner massmp

z is then calculated by multiplying the initial corner volume
by the zone density; likewise,Mz and Mp follow from Eq. (1). For an unstructured grid
composed of arbitrary polyhedra one sweeps all edges of all zones and calculates the above
mentioned entities [5]. These fundamental quantities are the building blocks that define the
control volume differencing that we employ. The rest of our underlying numerical algorithm
is now introduced.

We begin by considering the conservation of total energy. This can be written as∑
z

Mzez+
∑

p

MpEv2
p/2=Boundary Work, (2)

whereez is the specific internal energy of zonez, andEv p is the grid point velocity. Thus,
the internal and kinetic energies are defined in the zones and at the grid points, respectively.
For simplicity we neglect the boundary work term in Eq. (2), and take its time variation as∑

z

Mz1ez+
∑

p

MpEv p ·1Ev p= 0, (3)

where1 denotes the change of a quantity in a discrete time increment. Note that in obtaining
Eq. (3) from Eq. (2) we have considered both zone and node masses to be constant.

Next, the force equation at pointp can be written as

Mp
dEv p

dt
= EF p ≡

∑
z

Ef p
z . (4)

In this equation we have defined a new object,Ef p
z , that we call the corner force. This force

acts from zonez and is applied to pointp such that if one sums all corner forces common
to this point (these belong to the neighboring zones that contain this point as a vertex), then
the total force acting on pointp, EF p, is obtained. The corner force, like the corner mass,
is defined with two indices: one refers to the zone in which it is constructed, and the other
indicates the point on which it acts. In our notation,Ef p

z = Ef z
p, except that we always sum

with respect to the lower index. The explicit functional form of the corner force is, as yet,
undefined. How these forces are to be computed is discussed in Section 5.

Finally, the rate of work done by corner forces of any functional form (and thus, the change
in internal energy due to them) can be computed “compatibly” utilizing conservation of
total energy. The main result is that the rate of exchange of kinetic energy from grid point
p to zonez due to the corner forceEf p

z is simply the dot product of this force into the
velocity of grid pointp. This follows from Eqs. (3), (4) after performing a discrete change
of summation by parts and can be rigorously justified [1]. Thus, in general, the change in
internal energy produced by the corner forces,Ef z

p, of a given zonez can be calculated by

1ez=−
∑

p
Ef z

p · Evn+1/2
p 1t

Mz
, (5)
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where1ez is the change of the specific internal energy of zonez in a time1t , andEvn+1/2
p is

the average ofEv p at the old and advanced time levels. It is Eqs. (2), (4), (5) that constitute
an algebraic identity for an arbitrary functional form of the corner force object,Ef p

z . This
fact allows us to compute the work done by forces that are specified in discrete form in a
generic manner utilizing Eq. (5), without the need of a continuum, undiscretized expression
for the work they perform. This affords us the freedom needed to specify forces due to
an edge-centered artificial viscosity, subzonal pressures, and subzonal deviatoric stress
tensors. Operationally, by “compatibility” we mean that the work performed by all forces
is computed using Eq. (5).

To complete the system of equations the pressure in a zone,Pz, must be specified. This
requires an equation of state,Pz= P(ρz, ez), and thus the zone densityρz, as well asez

from Eq. (5). The zone density is found simply from the zonal mass as

ρz = Mz/Vz(t), (6)

where the zone volumeVz(t) is computed from the zone coordinates at timet , as detailed
previously. Initial conditions forρz,Vz, andez in the zones, and velocityEv p at the points,
along with suitable boundary conditions, must be specified.

If Eq. (6) is inserted into the continuity equation that expresses conservation of mass,
there results the equation for the evolution in time of a discrete Lagrangian volume element
[3, 1]. This equation is

(∇ · Ev)z = 1

Vz

dVz

dt
, (7)

where the volume of a zonez is a function of its defining coordinatesVz(t)=Vz( Er1, Er2, . . . ,

Ern); the Eri = Eri (t) depend on time, andEvi ≡ d Eri /dt for the motion of a Lagrangian point.
What is essential to note is that by defining an explicit functional form for the zone volume
in terms of the grid point coordinates, the basic elements of the control volume differencing
scheme have been given. This follows from the fact that at the initial time(∇ · Ev)z is now
known directly from Eq. (7). FromVz(Eri (t)) the grid vectorsESi or EAi can be derived (we
usually work the other way, from surface vectors to volume computation, but these are
equivalent), and the grid vectors enable one to construct all discrete forces.

3. THE SYMMETRY PROBLEM

The basic problem in numerically preserving some special one-dimensional symmetry
in more than one dimension can be seen simply and intuitively by considering the difficulty
with discretizing the pressure forces. A pressure acts normal to any surface, and thus the
resulting forces at a grid point depend on the surrounding grid topology. In general, this is
arbitrary. Consider a sphere with some constant, nonzero pressure that is allowed to expand
freely into an external void. The forces calculated on the discretized initial boundary of the
sphere will not point in the radial direction because the net outward normal vector used
to compute this force does not generally point radially. Thus, totally numerical deviations
from spherical symmetry result. This defective property of the numerical scheme makes the
distinction between physical departures from 1D symmetry due to physical perturbations,
and departures that are due solely to numerical error, difficult if not impossible to separate.
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3.1. Grid Topology and Restrictions

It is not possible to achieve spherical symmetry on arbitrarily constructed grids. This
is because a prerequisite for symmetry preservation is that a spherically symmetric initial
condition be perfectly represented by the initial grid construction; otherwise, numerical
perturbations are by necessity present in the initial conditions, and departures from spherical
symmetry will always result. In the case where instability is possible they can act to seed
its growth.

In Fig. 1 is shown a grid construction in 2D, with coordinate lines that are radial denoted
by the logical indexk, and those that are angular by the logical indexl ; the logical indexm
is common to all points of this figure and is used to denote the third dimension. All points
that lie on a line with common indexl are at the same distance from the origin 0.

Initial conditions that correspond to spherical symmetry in 3D Cartesian geometry consist
of density, specific internal energy, and thus pressure, that must be constant between adjacent
lines of indexl (referred to asl -lines in 2D andl -surfaces in 3D); and also, the initial velocity
must be constant in magnitude (possibly zero) and directed radially on a givenl -surface. Two
additional requirements must be met. First,(∇ · Ev)z must be uniform between twol -lines or
l -surfaces. From Eq. (7) this implies that the fractional volume change, and thus the density
on the next timestep, will remain uniform betweenl -surfaces. Second, the algorithm for
calculating corner volumes, and thus the initial Lagrangian corner masses, must be such that
the initial “radially directed” component of the force (computed using unmodified control
volume differencing from the initially specified and symmetric pressure), divided by the
nodal mass must have a constant magnitude along anl -surface. (The pressure gradient is
to be modified so that the tangential component of this force vanish, using the method
given in Section 4.) This last requirement places some mild restrictions on the choice of
auxiliary points—the center point of a zone and of the zone sides between twol -surfaces in
3D. Generally, defining these points as the arithmetic average of the surrounding dynamical
points will allow this requirement (uniform radial acceleration on anl -surface) to be satisfied
[2] for a reasonable surface interpolation between these auxiliary points and the dynamical
points that define a zone.

If (∇ · Ev)z satisfies the symmetry requirement this underlying differencing scheme can
be modified so that spherical symmetry can be preserved, otherwise it cannot, and is thus
not useful for simulating such problems. This is because the procedure presented in the
next section that modifies how pressure gradients are computed leaves the original value
of (∇ · Ev)z unchanged for an initially radial velocity field. This procedure modifies only
components of the surface vectors that are normal to a locally deduced radial flow direction,
denoted aŝc. If (∇ · Ev)z is symmetric the uniform radial acceleration condition mentioned
earlier can always be accommodated.

In three dimensions thek-surfaces of Fig. 1 are cones revolved about the verticalz-axis,
while thel -surfaces consist of sets of points with the same spherical radius from the origin. If
we think of this grid as constructed using spherical coordinates (R, θ, φ), these correspond
to the logical indices (l , k,m), respectively. However, this type of grid is restrictive; in
3D Cartesian geometry there are many other ways to tessellate a sphere. We wish to use
essentially unstructured grids for this purpose, except that they must be able to represent
spherical initial conditions exactly. The restriction that this places on our initial grids is
that no piece of anl -surface terminate. However, this is very mild. Thus the indicesk
andm can correspond to a completely unstructured grid with only thel index as a logical
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coordinate. Therefore, when spherical symmetry is important, our initial grids consist of
sets of points, each set with a common integer indexl , that have the same spherical radius
initially. Although this permits terminated (k,m) lines, in the rest of this development it
is assumed that this in not the case (this situation is discussed elsewhere [7]). Thus, our
l -surfaces always consist of the same number of grid points. Although thesel -surfaces may
be unstructured, they all have the same topology so that each surface can be stretched into
every other.

4. MODIFICATION OF THE GRADIENT OPERATOR

Here we present how the gradient operator is to be modified in order that spherical
symmetry can be obtained. We are concerned with only that portion of the surface area that
is constructed with respect to the logically structured part of the grid where the grid points
are separated into logical surfaces, each labelled by the indexl . Such a situation is depicted
in Fig. 3 where the point “0” is shown connected to its nearest neighbors with solid lines;
each of these points has the same surface indexl . Although four points that are nearest
neighbors to point 0 are shown in Fig. 3, in general the nearest neighbor set associated
with any given point will consist of three or more points. This number may vary across the
l -surface. The points shown in Fig. 3 as asterisks denote the center points of faces, and the
midpoints of edges, of the polyhedra that compose the grid. The coordinates of the face
center points are determined as a simple average of those of the surrounding dynamical
points with the same logical indexl . These points are joined by dashed lines that together
with the coordinate line connections form quadrilateral-like subplanes, each with a surface
area vector about the point 0 in Fig. 3, and labelled asEAi,0 wherei = 1 . . .4. It is the sum of
these vectors about each point of the surfacel that is to be modified so that symmetry can be
obtained. This is to be done for both the coordinate-surface and the median-surface pieces
of the mesh associated with the logical indexl in the manner that is detailed next. Then
in Section 5 it is explained how forces are to be computed using these modified, directed
surface areas.

It is assumed that the points 0. . .4 all lie on the surface of a sphere of radiusa with a
center point that has coordinates given by the vectorERctr with respect to an arbitrary origin

FIG. 3. Coordinate-line mesh about grid point 0 on a logical surface with indexl . Solid lines connect nearest
neighbor grid points (solid dots). VectorsEAi are the piece of the gradient operator that is to be modified about
point 0.
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of our coordinate system. These two quantities are unique only to the point 0 with its nearest
neighbor point set. With respect to some other point on the samel -surface with its nearest
neighbor point set these quantities may be completely different. That is, we do not assume
any common spherical center point or radius for the points on the logical surfacel . What
we seek, given only the coordinate locations of the points 0. . .4 (points 0. . .n with n ≥ 3,
in general), is the unit vector that points in the outward normal direction to a sphere placed
through these points, either directly or in the least squares sense, at the point 0. This we
label as the unit vector̂c. Then we modify the surface area vectorsEAi about point 0 such
that when summed they yield a net resultant vector that is parallel to the directionĉ.

The unit vector̂c, thus defined, can be computed as follows: First, the points 0. . .n have
known position vectors given byERi , i = 0 . . .n (althoughn= 4 in Fig. 3, this derivation is
kept completely general). Since these points are assumed to lie on the surface of a sphere
with center point position vectorERctr, and with radiusa, we have that

( ERi − ERctr)
2 = a2 for i = 0 . . .n. (8)

Next point 0 is singled out with respect to its neighbors by writingERi = ER0+ ( ERi − ER0) ≡
ER0 +1 ERi,0 for i ≥ 1, where the vectors1 ER0,i = ( ERi − ER0) are known coordinate vector
lengths. Using this identity in Eq. (8) to replaceERi yields

( ER0− ERctr +1 ERi,0)
2 = a2 for i ≥ 1. (9)

Next we substitute Eq. (8) withi = 0 into Eq. (9) above to eliminate the dependence on the
spherical radiusa2 to obtain

21 ERi,0 · ( ER0− ERctr) = −(1 ERi,0)
2 for i ≥ 1. (10)

This result can be written in matrix form as

Ax = b, (11)

where thei th row of then× 3 dimensional matrixA is given by the components of the
vector 21 ERi,0= 2[(xi − x0), (yi − y0), (zi − z0)]≡ 2[1xi ,1yi ,1zi ]; the 3× 1 column
vectorx of the unknowns has components [(x0− xctr), (y0− yctr), (z0−zctr)], and then× 1
inhomogeneous data vectorb has the entries−(1 ERi,0)

2. If n> 3 this system of equations is
over-determined. To obtain a unique solution it is multiplied by the transpose of the matrix
A, denoted asAT , to obtain

Ãx = b̃, (12)

where

Ã ≡ ATA = 4


∑

i1x2
i

∑
i1xi1yi

∑
i1xi1zi∑

i1yi1xi
∑

i1y2
i

∑
i1yi1zi∑

i1zi1xi
∑

i1zi1yi
∑

i1z2
i

 , (13)

b̃ ≡ ATb = −2


∑

i1xi (1 ERi,0)
2∑

i1yi (1 ERi,0)
2∑

i1zi (1 ERi,0)
2

 . (14)
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Here
∑

i has the rangei = 1 . . .n over thel -surface nearest neighbors of point 0. This oper-
ation is equivalent to performing a least squares fit of a sphere to the set of pointsi = 0 . . .n,
and thus leads to a 3× 3 system of linear equations. The solution vector componentsxj are
given byxj = detÃj/detÃ, where det̃A is the determinant of the matrix̃A, and the matrix
Ãj is formed from the matrix̃A by replacing thej th column ofÃ with the column vector
b̃. The j th component of the unit vectorĉ that we seek, denoted ascj , is given by dividing
eachxj by the magnitude of the vectorx, where|x| = (∑3

j = 1 x2
j )

1/2. Thus, our final result
for the componentscj is

cj = detÃj[∑3
j=1(detÃj )2

]1/2 ( j = 1, 2, 3). (15)

From Eq. (15) it is seen that finding the directionĉ involves only the computation of the
determinant of three 3× 3 matrices at every grid point. This equation gives the direction
cosines of the outward normal to a sphere at the point 0 that is fit to the set of points
i = 0 . . .n. If all of these points are coplanar the radius vector( ER0 − ERctr) of this sphere
goes to infinity. Suppose all points lie in thex–y plane so that1zi = 0 for all i . Now not
only are both the third column and the third row ofÃ zero, but also the third entry in the
vectorb̃. Thus, the matrices̃Aj all have zero determinant and Eq. (15) for the components
cj becomes ill-defined. (Note that this does not occur if we havei = 3 and solve forx from
Eq. (11), since then only the third column ofA vanishes andb has all nonzero entries.)

It is important thatĉ never have all zero components or be determined by numerical
noise. To prevent this we develop the following procedure. First, note that the trace ofÃ is
never zero since Tr(Ã)= ∑i(∆ ERi)

2. Also, only one eigenvalue of̃A can vanish since all
points about point 0 can become coplanar, but not collinear. We thus define a criterionδ

that indicates the vanishing of an eigenvalue ofÃ by taking the cube root of the product of
its eigenvalues and dividing this by the average of their sum. Thus, we have

δ ≡ 3(detÃ)1/3

Tr(Ã)
< 10−3 θφ

2π2
. (16)

If δ is less than the RHS of the indicated expression above, whereθ andφ are the effective
spherical angles of a given problem in radians, then we do not computecj from Eq. (15)
but instead calculate these components directly fromÃx= 0, as the eigenvector of the zero
(or nearly zero) eigenvalue of̃A. Now ĉ is always well defined.

The coordinate-line surface mesh vectors are modified about the point 0 with respect
to the surface with logical indexl so that the total gradient operatorEAT,0 with respect
to this surface,EAT,0≡

∑n=4
i=1
EAi,0 as seen from Fig. 3, has no component in the direction

perpendicular tôc. To this end we define the component of this vector that is perpendicular
to the directionĉ, denoted asEA⊥,0, by

EA⊥,0 ≡
n∑

i=1

EAi,0−
n∑

i=1

( EAi,0 · ĉ) ĉ. (17)

To remove this component fromEAT,0 we simply subtract equal portions of it from each of
the vectorsEAi,0. Thus, the modified coordinate-line surface mesh vectors that we label as
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EAM
i,0 are given by

EAM
i,0 = EAi,0− ( EA⊥,0/n) χ(0), (18)

whereχ(0) is a function of point 0, defined in Section 6, that has a magnitude between
zero and unity. It is used to decide how much the vectorEAi,0 should be modified. It is
important to note that although the vectorEAM

T,0≡
∑n

i=1
EAM

i,0 has no component perpendicular

to the direction̂c whenχ(0)= 1, each modified surface vectorEAM
i,0 generally has a nonzero

component in this direction. It is only the net sum of these vectors about point 0 that has been
eliminated. This is why this modification does not cause egregious changes to the original
gradient operator. It is a subtle manipulation of the truncation error of the difference scheme
in favor of spherical symmetry, and thus does not impose it when physically absent.

Finally, the median mesh vectorsESi,0 midway between twol -surfaces are also modified
in the same manner as that prescribed by Eqs. (17), (18). This is necessary for obtaining
symmetry when subzonal pressure forces, or forces due to deviatoric stresses, are discretized.
In this case the direction vectorĉ used to modify these median mesh vectors is found by
simply adding the twôc vectors from the adjacentl -surface points and renormalizing the
magnitude to unity.

5. CALCULATION OF FORCES

It is now assumed that both the coordinate-line and median meshes along the designated
l -surfaces have been modified with respect to the local directionĉ by means of Eqs. (15)–
(18). These surface areas are designated asEAM

i ( EAi if unmodified) when referring to the
coordinate-line mesh, and asESM

i ( ESi if unmodified) when referring to the median mesh, of a
zonez (the subscript for point 0 is hereon suppressed). How the various forces that appear in
our model are computed with respect to these two meshes is now detailed. The computation
of the corner force vectorEf p

z with respect to zonez and point p is given for pressure
and material strength forces. The edge-centered artificial viscosity force contribution toEf p

z

is calculated from the unmodified median mesh vectorsESi as given in the Appendix of
[4]. (There are twelve separate viscosity force contributions from a hexahedral zone.) The
corner forces are summed overzabout a fixedp to obtain the total forceEF p used to advance
velocity in Eq. (4). They are also used to compute the rate of change in internal energy as
−∑p

Ef z
p · Evn+1/2

p in Eq. (5). Although the zones may be polygons of any construction, the

specific case of hexahedrons is singled out. The generalization ofEf p
z to the former case is

apparent.

5.1. Pressure Forces

The corner forceEf p=0
z (mp) due to the mean zone pressure “mp” in zonez that acts on

a point p= 0 is computed using the coordinate-line mesh subsurface vectorsEAi that are
associated with this point and zone; they are outwardly directed with respect to the volume
contained in zonez. For a subzonal corner that is a quadrilateral there are three such vectors
as shown in Fig. 4; thus this force is

Ef p=0
z (mp) = Pz

( EA1+ EA2+ EAM
3

)
, (19)

where Pz is the mean pressure in zonez. The vector EAM
3 lies along thel -surface of the
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FIG. 4. Coordinate-line mesh corner stencil used for computing mean zone pressure forces.EAM
3 has been

modified for symmetry purposes.

point p= 0 and the zonez and has been modified by means of Eq. (18). By defining the
direction of the EAi ’s as outward normals, Eq. (19) gives a control volume representation
of the integral of the pressure force−∇Pz when summed over all zones about pointp.
Before modification of the vectorEAM

3 for symmetry, this force could be calculated from
the median mesh vectors with inwardly directed normals with respect to the nodal volume
about pointp yielding the identical net result. However, once the symmetry modification
has been made these two prescriptions are no longer equivalent. It is only the coordinate-line
mesh prescription that can be modified so that symmetry is preserved [2].

The continuity equation is employed to write both the momentum and internal energy
equations in Lagrangian form where the densityρ appears outside of the total time derivative
of both Ev p andez [3, 1]. Thus, on a spatially staggered grid, for this algebraic step to be
valid one must define not only a conserved zone massMz, and associated zone density and
volume evolution equations, but also a conserved point massMp, and point density and
volume evolution equations in an analogous manner. This latter step is of crucial importance
in that by then considering the spatial interrelation ofMz andMp by means of the common
corner massmp

z , one concludes thatmp
z must also be a constant, Lagrangian mass [3].

This leads to the formulation of subzonal pressure forces that stabilize the grid against
spurious motions and prevent all grid overlap and tangling. Consequently, there is a different
density, and thus pressure, in each zone corner (eight pressures in a hexahedral zone). The
differencing of the forces due to these separate internal zone pressures is discussed at length
in [3]. This differencing is constrained by the requirement of conservation of momentum,
but is not unique. However, when symmetry preservation is also required, only one force
differencing is possible. The subzonal corner pressures are subtracted from the mean zone
pressure and treated as perturbations. This allows for a larger dynamic range through the
introduction of a merit factor, 2M f , as defined in [3], that is generally of order unity or less.
These forces are small compared to the mean zone pressure forces throughout most of any
computation. They become large to resist grid tangling, since if the corner volume of a zone
becomes small its subzonal density, and thus pressure, becomes large. This produces forces
that strongly resist grid collapse as well as spurious and unresolved grid motions, the latter
often referred to as “hourglass” modes.
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FIG. 5. Coordinate-line and median mesh stencil of a zone corner about point 0 used for computing both
subzonal perturbed pressure forces, and material strength forces from subzonal corner deviatoric stresses. Vectors
EAM

3 and ESM
30 have been modified for symmetry.

The subzonal corner perturbed pressure “pp” forceEf p=0
z (pp) at pointp= 0 of zonez is

computed for a hexahedral zone as

Ef p=0
z (pp) = (2M f )

[
δP0
( EA1+ EA2+ EAM

3

)+ 1

2
(δP0− δP1) ES10

+ 1

2
(δP0− δP2) ES20+ 1

2
(δP0− δP3) ESM

30

]
, (20)

where the coordinate-line mesh vectorsEAi , and the median mesh vectorsESi , are specified
as shown in Fig. 5. The first term on the RHS of Eq. (20) is the same as the corner pressure
force from the mean zone pressure as given by Eq. (19); the other three terms are force
contributions from the median mesh, where 1/2 of the total force on each median mesh
segment is allocated to each of the two grid points involved. The vectorsEAM

3 and ESM
30 have

both been modified so that symmetry will be preserved if present in the computation. The
contributions from the median mesh vectorsES10 and ES20 are both zero in this case, since
when symmetry is present all perturbed corner pressures are equal along an inner or an outer
portion of anl -surface. It is for this reason that this force differencing preserves symmetry
when present, and it is unique in this sense [3]. The perturbed subzonal corner pressures in
a zone,δPi , are computed byδPi = c2

s,z(ρi − ρ̄)/γ , whereρi is the subzonal corner density
calculated from the Lagrangian subzonal mass and ¯ρ is the mean zone density calculated
from the Lagrangian zonal mass:c2

s,z andγ are the zone sound speed and the ratio of specific
heats of the zone material, respectively.

In computing the timestep that is utilized in our calculations the effects of the mean zone
pressure and the artificial viscosity are combined. The scalar part of the artificial viscosity
has the formρi C2

i along every edgei of a zonez [4], whereC2
i is an effective viscous

sound speed squared. The maximum value of allC2
i in a given zone is added to the actual

zone sound speedc2
s,z, as determined from the equation of state. The square root of this sum

determines a generalized sound speed that is used to compute the CFL condition for the
zone; the minimum of this time for all zones determines the timestep. The time integration
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scheme consists of an initial predictor step that advances all dependent variables from time
leveln to time leveln+1; this is followed by a single corrector step with forces re-centered
at then+ 1/2 time level.

5.2. Material Strength Forces

The construction of forces that arise from material strength presents unique difficulties if
one wishes to preserve the limit of 1D spherical symmetry. The first task is to calculate the
velocity gradient tensor∇i v j (defined in the zones) from which the traceless, symmetric
strain rate tensorεi, j is constructed (εi, j = [∇i v j +∇ j vi ]/2− δi, j∇ · Ev/3). Then the zone
deviatoric stress tensors̄̄T can be advanced in time [8]. (For a purely elastic material
Tn+1

i, j = Tn
i, j + 2Gεi, j1t , whereG is the shear modulus). The corner force that is applied to

a point from a given zone is then justEf p
z =− ¯̄T · EA, where EA is the total outward normal

area vector of a corner volume of zonez with respect to pointp. (For a hexahedron this is
composed of three coordinate-line mesh vectors, as shown in Fig. 4.)

As was noted in Section 3, the divergence of the velocity calculated in the zones by means
of our standard control volume differencing is consistent with 1D spherical symmetry, given
a velocity field that is spherically symmetric. With respect to forces that originate from
material strength, this requirement is that the eigenvalues of the tensorsTi, j or εi, j all be
equal between twol -surfaces (this is equivalent to a symmetric pressure), and that two of
these eigenvalues be equal to each other (degenerate and−1/2 the value of the third). The
eigenvectors of the degenerate eigenvalues define a plane to which the third is the outward
normal. For the zones inside twol -surfaces these tensors can be transformed into each
other by a similarity transformation and are thus all equivalent. This is the requirement
that must be satisfied for the 1D spherically symmetric limit to be attainable by our 3D
numerical discretization. Unfortunately, we find that if we directly compute the strain rate
tensorεi, j using 3D control volume differencing, and with a spherically symmetric velocity
field defined at the points, that the eigenvalues ofεi, j inside twol -surfaces are not equal to
roundoff error, and the curl of the velocity field (anti-symmetric part of∇i v j ) is not zero. This
is unlike the case of 2D Cartesian geometry [2] where control volume differencing results in
these conditions preserved to roundoff error level for an angular grid. Since the divergence
of the velocity is consistent with symmetry (a consequence of its being constrained by the
volume relation Eq. (7)), it is still possible to obtain the symmetric 1D limit with 3D control
volume differencing. This is because the material strength forces in 1D appear as an addition
to the forces deriving from the symmetric scalar pressure, and thus the compatible heating
resulting from them (and computed using Eq. (5)) will be symmetric. The first problem is
that we must construct an alternative to control volume differencing to calculate the strain
rate tensorεi, j , and the resulting stressesTi, j , that will yield symmetric eigenvalues, and a
velocity field with zero curl, to roundoff error.

The solution to the problem just stated is to calculate the deviatoric stresses and the
strain rates in subzonal corners (eight tensors per hexahedron instead of one) by means of
a finite difference technique that is detailed in the Appendix. These tensors will then have
eigenvalues that meet our above stated symmetry requirements. We now assume that these
tensors are given and proceed to consider how the corner force that results from them is to
be calculated so that the 1D spherically symmetric limit can be achieved.

The proper control volume differencing of forces that are due to subzonal tensors that are
piecewise constant in the corner volumes of zones can be constructed in a simple analogy
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to how forces are constructed for subzonal pressures. Thus, from Eq. (20), we can simply
replace the multiplication of a scalar times a vector by the dot product of a tensor times
a vector (also set 2M f = 1) to arrive at the corner force acting on point 0 from subzonal
material strength ms tensors in zonez as

Ef p=0
z (ms) = − ¯̄T0 ·

( EAM
3 + EA1+ EA2

)− 1

2
( ¯̄T0− ¯̄T1) · ES10− 1

2
( ¯̄T0− ¯̄T2) · ES20

− 1

2
( ¯̄T0− ¯̄T3) · ESM

30. (21)

Once again the coordinate-line mesh vectorsEAi , and the interior zone median mesh vectors
ESi , are directed with outwardly pointing normals to the surface of the subzonal volume in
question. Because this sign convention gives−∇ · ¯̄T , a minus sign has been inserted into
Eq. (21) to achieve the plus sign convention used for computing forces due to deviatoric
stresses. The vectorsEAM

3 and ESM
30 are the modified form of these vectors that are used to

obtain symmetry for pressure forces. Since (EA3+ EA1+ EA2)=−( ES10+ ES20+ ES30), Eq. (21)
(using unmodified vectors) is equivalent to calculating the force as an average of adjacent
tensors acting on the median mesh, or

Ef p=0
z (ms) = [( ¯̄T0+ ¯̄T1) · ES10+ ( ¯̄T0+ ¯̄T2) · ES20+ ( ¯̄T0+ ¯̄T3) · ES30]/2, (22)

and thus is a valid contour integral calculation of the force due to these tensors. The remaining
question is whether or not the force differencing given by Eq. (21) results in symmetry. This
we examine next.

The deviatoric stress tensor̄̄T0 common to point 0 and to zonez as computed in the
Appendix can be written in diagonal form as

¯̄T0 =

λ ĉ0ĉ0 0 0

0 −λ/2 ĉ0⊥ĉ0⊥ 0

0 0 −λ/2 ĉ0⊥′ ĉ0⊥′

 , (23)

where we use dyadic notation; the unit vectorĉ0 coincides with the outward normal to a
sphere fit through point 0 and its nearest neighbors, as given in Section 4, when spherical
symmetry is present. The two vectorsĉ0⊥ and ĉ0⊥′ are perpendicular to this vector and
define the plane of the degenerate eigenvalues−λ/2. Since all tensors̄̄T common to a
given side of anl -surface have these same eigenvalues (but different eigenvectors) when
symmetry is present, we can examine Eq. (21) to see if forces at point 0 are aligned with
the direction of̂c0. It is clear that both the first and fourth terms on the RHS of this equation
meet this requirement. (EA1 and EA2 lie totally in regions where the surroundinḡ̄T ’s are
identical; ¯̄T0 and ¯̄T3 are along a common (k,m)-line and have the same eigenvectors.)
However, it is not obvious that the second and third terms of Eq. (21) that represents the
interaction with the two sides of the median mesh not alongĉ0 will yield forces in this
direction. Indeed, recall that for subzonal pressure forces these terms vanish because the
pressures on either side ofES10 or ES20 are equal. Here the eigenvalues of the tensors on
either side of these vectors are equal, but their eigenvectors are different so that this term
yields a nonzero force. To examine this we explicitly compute the second term on the RHS
of Eq. (21) for the total force exerted on the piece of the median meshES10 (we set the
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FIG. 6. Planar zone used to calculate subzonal material strength forces along median mesh edgeES10; angleθ
is arbitrary.

factor of one-half to unity). This force can be analyzed using a local coordinate system, as
indicated in Fig. 6. Since there are two degenerate eigenvalues to all¯̄T ’s, we need only one
perpendicular vector to eachĉ. The orientation of the median mesh vectorES10 is chosen as
ES10= (a, 0, 0), where “(x, y, z)” defines the respective local Cartesian components of any
vector. From Fig. 6 we also have the relevant unit vectorsĉ0= (−sinθ/2, cosθ/2, 0) and
its normalĉ0⊥ = (cosθ/2, sinθ/2, 0), as well as the vectorŝc1= (sinθ/2, cosθ/2, 0) and
ĉ1⊥ = (cosθ/2,−sinθ/2, 0) that are necessary for the specification of¯̄T1 (ĉ0→ ĉ1, etc., in
Eq. (23)).

Given the above definitions and using Eq. (23), the total force onES10, denoted asEF ES10
,

is given by

EF ES10
= −[( ¯̄T0− ¯̄T1) · ES10

= [−λ(ĉ0 · ES10)ĉ0+ λ/2(ĉ0⊥ · ES10) ĉ0⊥ + λ(ĉ1 · ES10) ĉ1− λ/2(ĉ1⊥ · ES10) Ec1⊥]. (24)

Using the definitions of the vectors in Eq. (24), it can be written in the equivalent form

EF ES10
= aλ[sinθ/2(−sinθ/2, cosθ/2)+ sinθ/2(sinθ/2, cosθ/2)+ sinθ/2(0, cosθ/2)]

= 3aλ sinθ/2(0, cosθ/2), (25)

where from here on the third index in our vector notation is suppressed; and, we have used
that fact that

λ

2
[(ĉ0⊥ · ES10)ĉ0⊥ − (ĉ1⊥ · ES10)ĉ1⊥] = aλ cosθ/2(0, sinθ/2)

= aλ sinθ/2(0, cosθ/2). (26)

Thus, it is seen from Eq. (25) that this force points in the direction of the average ofĉ0 and
ĉ1, and therefore the allocation of one-half of this force to points 0 and 1, as indicated by
Eq. (21), will not result in spherical symmetry preservation. However, if we use the vector
relation

sinθ/2(0, cosθ/2) = sinθ/2

[
1

2
(sinθ/2, cosθ/2)+ 1

2
(−sinθ/2, cosθ/2)

]
, (27)
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then Eq. (25) can be rewritten as

EF ES10
≡ EF0, ES10

+ EF1, ES10
= 3aλ

2
[sinθ/2(−sinθ/2, cosθ/2)+ sinθ/2(sinθ/2, cosθ/2)].

(28)

Finally, we write the two terms that appear in Eq. (28) as separate forces

EF0, ES10
= −3

2
[( ¯̄T0 · ES10) · ĉ0] ĉ0, (29)

EF1, ES10
= +3

2
[( ¯̄T1 · ES10) · ĉ1] ĉ1, (30)

where the first equation is to be added to the corner force applied to point 0, and the second
to point 1. This decomposition divides the total force on the median mesh vectorES10 into
separatêc0 andĉ1 directed components and is found to result in symmetry preservation. In
the above equations the forcē̄T · ESdue to each tensor is calculated and then projected into
the direction ofĉ at the point in question. It is seen that the degenerate eigenvalues add an
extra factor of one-half that contributes to the force in the symmetry direction. Note that
now only ¯̄T0 contributes a force to point 0; and likewise, onlȳ̄T1 contributes a force to
point 1.

The above is valid when symmetry is present. However, when symmetry is not present
this decomposition, valid for tensors with equal eigenvalues, is not exact, and contributing
one-half of the total force from vectorES10 to each adjacent point is a general and convergent
prescription. Keeping this in mind we write the total material strength “ms” corner force
on point 0 as a combination of Eq. (21) and Eq. (29) using the switchχ(p) (herep denotes
point 0) to obtain

Ef p=0
z (ms) = − ¯̄T0

( EAM
3 + EA1+ EA2

)− 1

2
( ¯̄T0− ¯̄T3

) · ESM
30−

1

2
[( ¯̄T0− ¯̄T1) · ES10

+ ( ¯̄T0− ¯̄T2) · ES20](1− χ(0))− 3

2
[ ¯̄T0 · ( ES10+ ES20) · ĉ0] ĉ0χ(0), (31)

valid for a hexahedral zone and readily extended to arbitrary polygons. The above expression
is our final prescription for the corner force due to material strength acting from a zonez to
a dynamical pointp calculated from subzonal deviatoric stress tensors, one in every corner
volume of a zone. Next, the functionχ(p) that automates this and the other correction
procedures employed to obtain symmetry is defined.

6. DETERMINATION OF χ (p)

In all of the modifications that have been made to our standard control volume differencing
(Eq. (18) for constructing the modified mesh vectorsEAM

i and ESM
i , Eq. (31) that defines

material strength forces, and Eqs. (38), (39) for computing corner strain rates), the quantity
χ(p), defined on the grid pointsp has been introduced as a multiplicative factor that ranges
in value from zero to unity. This factor determines how much of the corrections necessary
to preserve symmetry should actually be retained. The calculation of this factor at each of
the grid points is now given by means of an estimation of the variation in the curvature
measured between the grid point 0 and itsn nearest neighbors.
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The curvature vector between two points 0 andi that are on the same spherical surface
with a distance vectorEl i 0≡ Exi − Ex0 between them is found to be given by

EK i 0 = ĉi − ĉ0

El i 0 · (ĉi − ĉ0)/|ĉi − ĉ0|
. (32)

In 2D the vectorsEl i 0 and (̂ci − ĉ0) are always parallel when 1D spherical symmetry is
present, and the magnitude ofEK i 0 is equal to the inverse of the spherical radius to roundoff
error accuracy. In 3D this is also the case independently of the placement of points if we use
the projection ofEl i 0 along the unit difference vector of (ĉi − ĉ0), as indicated in Eq. (32).
We are interested only in the magnitude of the vectorsEK i 0. They are first used to construct
the mean value of the curvature at point 0. This is defined asK̄0=

∑n
i=1 | EK i 0|/n. Next, we

construct the root mean square of the deviation of the magnitude of the vectorsEK i 0 at point
0. This is given by

K rms
0 ≡

[
1

n

n∑
i=1

( | EK i 0|−K̄0

K̄0

)2
]1/2

. (33)

The quantityK rms
0 is zero to roundoff error if the point 0 and itsn nearest neighbors all lie

on the same spherical surface. Otherwise, it is a positive number that measures the curvature
variation about point 0. It is clear that if this number is too large our modifications to obtain
a nonexistent spherical symmetry do not make sense and the original scheme should be
used about a given point. With this in mind we define the value ofχ(p) at the pointp= 0
by the set of relations

χ(p = 0) = 1.0 (0≤ K rms
0 ≤ 0.01),

χ(p = 0) = 1.0− (K rms
0 − 0.01)/0.09 (0.01< K rms

0 ≤ 0.1),

χ(p = 0) = 0.0 (0.1< K rms
0 ).

(34)

The breakpoints 0.01 and 0.1 in the above expressions are clearly somewhat arbitrary, but
ones that we have found to be reasonable. (For an ellipticity of 1.5 and 10◦ zoning of a
90◦ quadrant, as in the initial grid for the Schulz ellipse problem in 2D [9],K rms

0 varies
from 0.025 to 0.14 along anl -line.) The symmetry modifications introduced here should
not be used at points about which significant variation in local curvature occurs; if these
modifications are used arbitrarily they can be large and lead to a reduction in both robust-
ness and accuracy of the overall differencing scheme. The automation procedure presented
gives a dynamically determined, and locally pointwise, way to incorporate corrections that
capture symmetry into the framework of control volume differencing in 3D Cartesian, or
2D cylindrical, geometry.

7. NUMERICAL RESULTS

Next are presented a series of numerical examples that are chosen to show the effectiveness
of the algorithm developed herein. This effectiveness is measured in terms of both the ability
to preserve 1D spherical symmetry when present, and to perform robustly while retaining
accuracy when symmetry is absent. All work is calculated compatibly using Eq. (5) so that
total energy is always conserved at roundoff error level. Unless otherwise noted, an ideal
gas equation of state withγ = 5/3 is utilized. The artificial viscosity always uses standard
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FIG. 7. (a) Noh’s problem. Spherical wedge with angles1θ = 20◦ and1φ= 5◦, density and velocity vectors
at t = 0.6. Symmetry modification on. (b) Noh’s problem. Spherical wedge with angles1θ = 20◦ and1φ= 5◦,
density and velocity vectors att = 0.6. Symmetry modification off.
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parameter settings [4]. When the symmetry preserving corrections to the algorithm are
turned on it is always in conjunction with the automation factor of Section 6; thus, these
corrections are dynamically adjusted. Although the algorithm constructed in this paper can
be used with an unstructured grid, all problems are run on a test code that is constructed
using a 3D, logically connected grid.

7.1. Noh’s Problem

Noh’s problem [10] is initialized as a sphere of radius unity, with a density of unity, a
specific internal energy of zero, and a velocity field that is directed radially inward with
a magnitude of unity. A shock wave moves outward from the center of the sphere where
the velocity is initially discontinuous. The density inside this outward moving shock wave
should have a value of 64.0 and the specific internal energy should be 0.5. At timet = 0.6
the shock wave should be at a major radius of 0.2.

In Fig. 7a the density contours with grid and velocity vectors (white heads and black tails)
are shown att = 0.6. The grid shown is a spherical wedge of 180◦ in θ with angles spaced
at 20◦, and with 15◦ in angleφ using three 5◦ zones; reflective boundary conditions are
specified at planesφ= 0◦ andφ= 15◦. There are 101 equally spacedl -surfaces at the initial
time. The wedge is displayed at 45◦ with respect to the viewer so that the outerl -surface can
be clearly seen. The symmetry modification of Section 4 is turned on. Perfect symmetry
of the density and specific internal energy is observed (roundoff error level≈10 decimal
digits), and the velocity vectors are perfectly radial. The density rises to about 61.2 with the
shock front at about 0.21 at this time. The usual overheating difficulty at the center that is
unavoidable with this problem is visible. Figure 7b shows the result for this problem with
the corrections for symmetry turned off. The distortions of both the density contours and
velocity vectors are clearly seen. The density rises to a value of 70 in some places due to
grid distortion.

7.2. Self-Similar Implosion

This problem has an analytical solution; it has been studied by numerous authors [11–
13]. A sphere with initial unit radius, unit density, and zero internal energy is driven by
an inward radial velocity that is specified at the boundary. This radial velocity has a time
dependence that is calculated from a self-similar solution expressed as the answer to an
ODE problem [13]. An approximate form for this expression as well as the radial density
profile at timet = 0.8 is given in [2]. The shock converges at the origin of the sphere at
t = 0.75 and the density should be flat at about 9.5; att = 0.8 the outward propagating radial
shock should be at a radius of about 0.11, and with a density peak of 31.5. We employ a
grid with 101l -surfaces. The outer 90 intervals are equally spaced in radius, while the inner
10 are increased in size by a constant factor of 1.05 (ratio zoning). We use 30 angles in
the interval 0≤ θ ≤π whose spacing is determined by choosing equal intervals in cosθ ;
two 15◦ angles inφ are used to form a 30◦ wedge. The nonuniform adjustments in the grid
are utilized to keep the timestep from decreasing too much in the course of the simulation.
Reflective boundary conditions are applied on theφ= 0◦ andφ= 30◦ planes. Modifications
to obtain symmetry are turned on.

The grid and density contours of this simulation at timet = 0.8 are shown in Fig. 8a. A
density peak of 32.5 is achieved at a radius of about 0.1, very close to the known solution.
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Spherical symmetry is preserved to the level of roundoff error. The central region of thex–z
plane of this result is shown in enlarged form in Fig. 8b. Next, this same simulation is run
with the symmetry corrections turned off. The grid with density contours in thex–z plane,
and enlarged about the center of convergence, is given in Fig. 8c. Here the subzonal pressure
forces are still on, but we note the substantial grid distortion that occurs relative to Fig. 8b.
Finally, if this simulation is run without either symmetry correction or subzonal pressure
forces the result obtained is shown in Fig. 8d. The grid is extremely distorted and the region
inside thel = 2 surface is smashed into a pancake-like region. If this simulation is run with
symmetry corrections, but without subzonal pressure forces, then the results are essentially
identical to those of Figs. 8a, 8b. That is, subzonal pressure forces are not needed to obtain
correct results for symmetric problems where the initial grid matches this symmetry. They
sometimes (but not always) help maintain grid integrity if symmetry corrections are not
used, but are not the solution to the symmetry problem. If the subzonal pressure forces are
not also constructed to preserve symmetry, then their use with mean zone pressure forces
that are symmetry preserving will substantially damage the solution.

We note that the radial distributions of density for both of the preceding problems are
close (three digits) to those published using 2D cylindrical geometry [2, 4] with standard vis-
cosity settings and control volume (as opposed to area-weight) differencing with symmetry
modifications.

7.3. Skewed Piston

One-dimensional shock tube problems have long been used to assess the robustness and
accuracy of numerical schemes in both one and two dimensions. This is extended to three
dimensions. Here a piston with a square base of length 0.1 on a side and a height of 1.0
is constructed; 10× 10 zones compose its base and 100 zones are used along its height.
However, the grid lines of this volume are skewed with respect to each other. The entire
grid is specified by the formulas

x = .01(l − 1)+ .01(11− k)(6−m)/5 sin(.01π(l − 1)) for 1≤ m≤ 6,

x = .01(l − 1)+ .01(k− 1)(m− 6)/5 sin(.01π(l − 1)) for 7≤ m≤ 11,
(35)

y = .01(m− 1),

z = .01(k− 1),

where the height of this grid is along thex direction, and the ranges ofk andl are 1≤ k≤ 11
and 1≤ l ≤ 101. A side view is shown in Fig. 9a. Its construction is based on generalizing
the Saltzman piston grid in 2D [14, 3] in the following manner: them= 1 surface, shown
as the top face of Fig. 9a, is the original 2D, skewed Saltzman grid; this grid is additionally
skewed with respect tom-surface number into its opposite parity at them= 11 surface
(bottom face and hidden in Fig. 9a). Them= 6 surface is thus not skewed at all.

The initial density is unity and specific internal energy is zero. Reflective boundary
conditions are applied to the four rectangular sides. At the bottom square face a velocity of
unity is specified in thex direction; at the opposite square face the velocity in thex direction
is set to zero. The shock wave hits this latter face at timet = 0.75; the density should be
equal to 4.0 in the singly shocked region and equal to 10.0 in the doubly shocked region
that results aftert = 0.75.
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FIG. 8. (a) Self-similar implosion. On-axis center of convergence, density contours, and grid att = 0.8.
Symmetry modification on. (b) Self-similar implosion. Density contours and grid att = 0.8 in the x–z plane,
enlarged about center of convergence. Symmetry modification on, subzonal pressure forces on withM f = 1.0.
(c) Self-similar implosion. Density contours and grid att = 0.8 in thex–z plane, enlarged about center of conver-
gence. Symmetry modification off, subzonal pressure forces on withM f = 1.0. (d) Self-similar implosion. Density
contours and grid att = 0.8 in thex–z plane, enlarged about center of convergence. Symmetry modification off,
subzonal pressure forces off.
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FIG. 8—Continued
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This problem is run with symmetry modification turned on; thel -surfaces are approx-
imately normal to the flow direction for the initial grid of Eq. (35), so this makes sense.
However, the curvature deviation factorK rms

0 is found to be about unity over all points of
the grid att = 0., and thereafter in time. Thus, the results shown next are the same as those
obtained without this modification. Since the default for this algorithm is to always have
the symmetry corrections active, it is important that the automation procedure of Section 6
turn them off continuously as distorted grids develop in time, or are decreed initially.

The grid and density contours of the same two faces visible in Fig. 9a at timet = 0.0
are shown in Figs. 9b and 9c at timet = 0.8, where in the former case subzonal pressure
forces are employed withM f = 1.0, while in the latter case these forces are turned off. The
density in the latter case peaks at 23, but is clipped so that an easier comparison can be
made. The extreme grid distortion and consequent density perturbations that occur when
subzonal pressure forces are not utilized are clearly evident in Fig. 9c, while Fig. 9b shows
only very modest grid distortion and density variation from the true solution. Indeed, in this
latter case the final grid over which the shock has propagated is mostly straightened out and
is much less skewed than the initial grid.

7.4. Blake’s Spherical Elastic Wave

This problem tests the algorithm when material strength forces (purely elastic in this
instance) are present and dominant in determining the solution. The geometry is a hollow
sphere with an inner radius of 10 meters that is surrounded by an outer elastic material. A
pressure that varies asp= exp(−t) in time is applied to this inner surface and an elastic
wave propagates radially outward [15]. (Units are in (cm/kg/ms) so that pressure is in
kb.) The elastic medium has a shear modulusG= 125 kb, and an unperturbed density
ρ0= 0.002 kg/cm3. The equation of state of this elastic medium is given by

p = 103

3
ln

(
ρ

ρ0

)
, (36)

and with a constant sound speed ofcs= 500 cm/ms.
Our initial grid is constructed using spherical(R, θ, φ) coordinates with the inner radius

at 10 meters, outer radius at 30 meters, and divided into 80 zones that are 25 cm in length.
We choose 45◦ angular zoning in bothθ andφ and use two angular zones in each angle to
cover one octant of a sphere. Reflective boundary conditions are applied to thex= 0, y= 0,
andz= 0 planes of this spherical octant. The problem is run to a timet = 2.0 ms. The elastic
force contribution is computed in two different ways. First, with all symmetry corrections
on the elastic force contribution is calculated from stresses that are defined in corners as
detailed in Subsection 5.4, Eq. (31), and with strain rates calculated by the finite difference
procedure of the Appendix. Second, with all symmetry corrections off, the elastic forces
are computed from zone-centered stresses using zone-centered strain rates calculated from
the control volume procedure of the Appendix. In this instance the material strength corner
force of Eq. (31) consists of only the first term on the RHS that involves the coordinate-line
mesh surface vectorsEAi .

The grid with pressure contours and velocity vectors is shown at timet = 2.0 ms for the
first case—symmetry corrections on—in Fig. 10a. (This is viewed from behind the origin.)
The velocity vectors are radial and the pressure profile exhibits spherical symmetry to
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FIG. 9. (a) Skewed piston problem. Initial grid with constant shear along thez direction; facesz= 0.0 and
z= 0.1 (hidden) are skewed with opposite parities but equal magnitudes. (b) Skewed piston problem. Grid and
density contours at timet = 0.8, subzonal pressure forces on with merit factorM f = 1.0. (c) Skewed piston
problem. Grid and density contours at timet = 0.8, subzonal pressure forces off.

roundoff error accuracy. The same results for the second case—symmetry corrections off—
are displayed in Fig. 10b. Substantial departures from symmetry in both the pressure profile
and the velocity vectors that are not along coordinate axes are clearly visible. Since this is
basically a wave, the actual grid motion is slight; thus, noticeable grid distortion does not
occur and subzonal pressure forces cause negligible changes. The actual grid motion and the
velocity profile as a function of radial position is shown in Fig. 10c, along with the analytical
solution obtained from Blake [16], for the case where the symmetry preserving algorithm
was used. Agreement is seen to be good and can be directly compared to the results given in
Fig. 3 of Ref. [15]. With symmetry corrections the results show no sensitivity to the size of
the ignorable angles. Without symmetry corrections these results, along various radial grid
lines, depart significantly from each other and from the true solution. The solution given
by Blake reduces the equations to potential form and thus allows no oscillations of any
variables; the comparison here, although close to this solution, is computed with a wave
code.

8. CONCLUSIONS

A numerical algorithm has been developed that demonstrates the effectiveness of the
Lagrangian description for the numerical solution of problems with moderate to high flow
speeds in three-dimensional geometry. The difficulty of anomalous grid distortion and
spurious vorticity generation that limits these methods in 2D, and that is expected to be more
severe in 3D, is found to be well controlled by the presence of multiple zone pressures that
produce stabilizing forces that mitigate this problem. An edge-centered artificial viscosity
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FIG. 9—Continued
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FIG. 10. (a) Blake’s elastic expansion wave. One octant of a spherical grid with 45◦ angles in bothθ andφ,
25 cm radial zones. Grid with pressure contours and velocity vectors att = 2.0 ms. Symmetry modification on.
(b) Blake’s elastic expansion wave. One octant of a spherical grid with 45◦ angles in bothθ andφ, 25 cm radial
zones. Grid with pressure contours and velocity vectors att = 2.0 ms. Symmetry modification off. (c) Blake’s
elastic expansion wave. Radial distributions of velocityv, and displacement1R, at t = 2 ms. Solid curves are
numerical solution; dashed curves are analytic result. Symmetry modification on.
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FIG. 10—Continued

that is effective in resolving shock disturbances in 3D is utilized. This viscosity, by means
of a simple limiter procedure, is able to reproduce the desirable effects of Riemann problem
solutions along each edge of each zone without the complexity that the latter entail. The
heretofore unsolved problem of perfectly preserving 1D spherical symmetry in 3D Cartesian
geometry has been solved by the use of a judiciously chosen set of modifications to the
surface vectors that compose the underlying control volume scheme. These changes are
automated in such a way that the robustness of the original control volume scheme is
not degraded when such symmetry is not a good approximation. This property of the
algorithm allows for 3D perturbation studies of spherical problems to be performed without
pollution from numerically generated errors—a subject of future work. The framework of
compatible differencing has been used to construct this algorithm. This is necessary in order
to include the desirable effect of forces that do not have ready continuum analogs that can
be directly differenced and also provides a solid mathematical underpinning for this work.
Although the Lagrangian description has fundamental limitations in that problems with
nearly pure velocity shear (e.g., Kelvin–Helmholtz instability) cannot be simulated, other
instabilities such as Rayleigh–Taylor unstable flow can be carried far into the nonlinear
regime without premature grid tangling [17]. In addition, the algorithm presented can be
used as the Lagrangian step of an overall ALE technique for situations where advection of
fluid is essential to an accurate solution.

9. APPENDIX: CALCULATION OF STRAIN RATES

Two different techniques are presented for computing the nine components of the velocity
gradient tensor∇i v j that are needed to advance the material deviatoric stresses in time, and
to compute the rotation rate by means of the curl of the velocity field.
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9.1. Control Volume Computation

Suppose that a given zone is defined byn grid points on which velocity and position are
specified, and that this zone has a volumeVz as calculated from subzonal tetrahedralization
or some other specified interpolant. Then this zone hasn corners each with an outward
normal vectorEAp that is also computed along with the specification ofVz. (In Fig. 4, EAp at
corner pointp= 0 is given byEAp=0= EA1+ EA2+ EA3.) Then the control volume computation
of the of the nine spatial derivatives of the velocity field defined in zonez is given by

∇i v j =
(

n∑
p=1

Ai,pv j

)/
Vz, (37)

where the sum is taken over all corners of zonez and bothi, j range from 1 to 3 indicating
thex, y, andz components, respectively. This is completely analogous to the vector form
of control volume differencing given in 2D in Appendix A of [1].

9.2. Finite Difference Computation

In order to compute the strain rate tensorεi, j in a manner that yields the symmetry
condition of uniform eigenvalues in all zones adjacent to a commonl -surface, and represents
irrotational flow accurately (∇ × Ev= 0 to roundoff error level), we use the following finite
difference procedure to calculate the velocity gradient tensor∇i v j in each corner of every
zone. First, we define three edge vectors that describe a corner that is common to a point 0
and a zonez using points 1–0, 2–0, and 3–0 as shown in Fig. 4. We denote the edge vectors
between these three sets of points by1Ex1,1Ex2, and1Ex3, respectively, where1Ex1 and1Ex2

are specified in terms of points 0, 1, 2 that are assumed to lie on a commonl -surface. These
vectors are defined as

1Ex1 = (Ex1− Ex0)− [(Ex1− Ex0) · ĉ0]ĉ0χ(0),

1Ex2 = (Ex2− Ex0)− [(Ex2− Ex0) · ĉ0]ĉ0χ(0), (38)

1Ex3 = (Ex3− Ex0),

whereExi is the position vector of pointi . For the two vectors1Ex1 and1Ex2 along anl -
surface we subtract off the component that is parallel to the outward normal directionĉ0 at
point 0. Thus,1Ex1 and1Ex2 are both perpendicular to1Ex3, but not with respect to each
other, when symmetry is present. (Like all other corrections performed to obtain symmetry
this is automated by the functionχ(p) as defined in Section 6.) Likewise, we denote the
edge velocity vectors as1Ev1,1Ev2, and1Ev3. These are similarly defined by

1Ev1 = (Ev1− Ev0)− [(Ev1− Ev0) · ĉ0]ĉ0χ(0),

1Ev2 = (Ev2− Ev0)− [(Ev2− Ev0) · ĉ0]ĉ0χ(0), (39)

1Ev3 = (Ev3− Ev0).

In our notation1Ex1≡ (1x1,1y1,1z1) and1Ev1≡ (1v1x,1v1y,1v1z), etc., as defined
above.
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Using these vectors we can write three sets of three equations in three unknowns whose
solution yields the nine differential components of the velocity gradient tensor in the corner
considered. The first set of these, which determine∂vx/∂x, ∂vx/∂y, and∂vx/∂z, is written
out below as (

∂vx

∂x

)
c,p

1x1+
(
∂vx

∂y

)
c,p

1y1+
(
∂vx

∂z

)
c,p

1z1 = 1v1x,(
∂vx

∂x

)
c,p

1x2+
(
∂vx

∂y

)
c,p

1y2+
(
∂vx

∂z

)
c,p

1z2 = 1v2x, (40)(
∂vx

∂x

)
c,p

1x3+
(
∂vx

∂y

)
c,p

1y3+
(
∂vx

∂z

)
c,p

1z3 = 1v3x,

where the subscripts(c, p) designate that these derivatives are defined in the cornerc of
the zonez with respect to pointp. By construction these equations are always linearly
independent. The additional two sets of three equations are obtained by lettingvx→ vy

andvx→ vz in the above. If more than three surface vectors define the corner of a given
zone, then the sets of equations given above are over-determined. However, only one vector
will lie betweenl -surfaces (1Ex3 and1Ev3 in the above) so that these sets of equations can
be solved by multiplying by their matrix transpose, yielding a well-defined least squares
solution.

Given the nine partial derivatives of the velocity gradient tensor calculated as indicated, it
is found that for a spherically symmetric velocity field (specified on sets of points distributed
in space in a manner consistent with that described in Section 3), that the eigenvalues ofεi, j

are equal on a common inner or outer layer of anl -surface, and∇ × Ev= 0, to roundoff error
level. In addition, the eigenvector of the principal eigenvalue ofεi, j defined about point 0 is
identical withĉ0. These tensors are thus aligned properly for a force calculation by means
of the control volume procedure detailed in Subsection 5.4. Except for initial debugging
purposes, the eigenvalues of the tensorsεi, j or Ti, j never need to be computed.
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