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This work presents a numerical algorithm for the solution of fluid dynamics prob-
lems with moderate to high speed flow in three dimensions. Cartesian geometry is
chosen owing to the fact that in this coordinate system no curvature terms are present
that break the conservation law structure of the fluid equations. Written in Lagrangian
form, these equations are discretized utilizing compatible, control volume differenc-
ing with a staggered-grid placement of the spatial variables. The concept of “compat-
ibility” means that the forces used in the momentum equation to advance velocity are
also incorporated into the internal energy equation so that these equations together
define the total energy as a quantity that is exactly conserved in time in discrete form.
Multiple pressures are utilized in each zone; they produce forces that resist spurious
vorticity generation. This difficulty can severely limit the utility of the Lagrangian
formulation in two dimensions and make this representation otherwise virtually use-
less in three dimensions. An edge-centered artificial viscosity whose magnitude is
regulated by local velocity gradients is used to capture shocks. The particular diffi-
culty of exactly preserving one-dimensional spherical symmetry in three-dimensional
geometry is solved. This problem has both practical and pedagogical significance.
The algorithm is suitable for both structured and unstructured grids. Limitations that
symmetry preservation imposes on the latter type of grids are delineated.

Key Words:Lagrangian hydrodynamics; symmetry; three-dimensional; fluid dy-
namics; Cartesian geometry; shock wave simulation.
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1. INTRODUCTION

Herein is presented a generalization from two dimensions (2D) to three dimensions (:
of a numerical method for the solution of the equations of fluid dynamics in Lagrangi
form that is suitable for the simulation of shock wave dynamics and subsonic, but s
compressible, flow speeds. This work is an extension to 3D of the 2D methodology t
has been published in four previous papers [1-4]. The framework in terms of which t
numerical algorithmis castis termed “compatible” control volume differencing, as espou:
in [1, 5]. The basic idea is that difference operators, such as gradient and divergence,
are used to compute force and work should have to the extent possible the same prop:
in discrete form as they do in continuum form (for example, negative adjointness). If this
true, then the derivation of other properties, such as conservation of total energy, follow
the same logic in the discrete case as in the continuum one. However, this idea can be 1
more encompassing in that the above requirements are contained as a subset of what we
to as “general compatibility.” In this case forces can be specified in any manner whatsoe
and the work done by these forces can still be calculated by a generic prescription <
that conservation of total energy is always obeyed. This allows for a generalization of
type of forces that can be specified: in particular, artificial viscosity forces [4], and subzo
pressure forces [3]. The Lagrangian formulation of the fluid equations is a powerful adap
description in that the grid automatically adjusts to follow the moving fluid. The inclusion
an artificial viscosity that is specified only in discrete form, and in conjunction with force
derived from multiple pressures in a zone, allows an accurate and very robust numel
algorithm to be constructed in 3D, as is demonstrated.

A more specific issue that is central in this paper is the development of an algorithm t
will preserve perfect one-dimensional (1D) spherical symmetry in 3D Cartesian geome
This is of crucial importance if meaningful 3D perturbation studies are to be performed w
respect to 1D spherical problems. This is a heretofore unsolved numerical difficulty in 2
the specified solution forms the major part of this work. A precise definition of this proble
is first given, and a solution in terms of an appropriate modification of the surface vect
that define control volume differencing is constructed. This is based loosely on previc
work [2], but is a significantly new and novel extension.

This paper presents only enough of the material in the first four works cited to ma
it readable and complete. Section 2 gives the essentials of the form of control volu
differencing that we utilize in 3D. This underpins all that follows; the important concep
of a corner mass and a corner force are briefly reviewed. Section 3 gives a discussion ©
problem of preserving one-dimensional spherical symmetry in 3D. The kinds of grids
which 1D spherical symmetry can, in principle, be expected to be preserved are discus
How the gradient operator must be modified from that used in control volume differenci
in order that spherical symmetry be preserved is presented in Section 4. Section 5 de
how forces are to be discretized to produce a scheme that is both robust and accure
three dimensions, and preserves 1D spherical symmetry when present, without impo
it when it is not. How this symmetry correction can be efficiently automated so that t
underlying control volume scheme is obtained when symmetry is not present is discus
in Section 6. Numerical results are given in Section 7 that demonstrate the effectivenes
the algorithm. This is followed by some final conclusions and an appendix that details
calculation of strain rates.
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2. COMPATIBLE CONTROL VOLUME DIFFERENCING, THREE DIMENSIONS

While the ideas and consequences of compatible, control volume differencingon a s
gered spatial grid have been given in depth elsewhere [1, 3], the essentials that are ne
to frame our discussion are briefly presented in the 3D context. The most basic concep
a spatially staggered grid, where pressure, density, and internal energy are defined in
centers, and coordinate position and velocity at the grid points that circumscribe the zo
are that of a corner mass and a corner force. We first define Lagrangian masses by v
of the corner mass; corner forces are introduced last.

The corner mass is determined at the initial time by multiplying the zone density by t
corner volume. In 2D Cartesian geometry a corner volume is specified as the area deline
by a grid point, the center point of the zone of which it is a part, and the midpoints of t
two coordinate lines that intersect the grid point and also form the sides of the given zc
In Fig. 1 the quadrilateral specified by the poiatsdeais a corner area (volume in 3D).
The mass inside this volume is the corner mass; we denote the corner mgsalbsre the
integer indicez and p denote the zone and point, respectively, with which it is associate
These two indices range over all zones and points of the grid. We defirem?, but
always sum the corner mass with respect to the lower index. Now the zonaMgpgtse
mass inside zong) and the nodal maskl, (the mass associated with grid poip} are
defined in terms of the corner mass as
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FIG. 1. Planar slice of a 3D logical grid in Cartesian geometry that supports 1D spherically symmetric init
conditions. Quadrilaterabdeais a corner area (volume in 3D). Indexdenotes third dimension
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FIG. 2. Tetrahedral decomposition of a hexahedron, used to construct coordinate-line&u)smedian
mesh é’s), and corner volumes.

where in the firstinstance we sum all corner masses with the samezratekin the second
we sum all corner masses with the same index

In order to define the corner volume in 2D we must define three auxiliary points: t
midpoints of two coordinate lines, and the center point of the zone that is always takel
have coordinates that are the arithmetic average of those that define the zone. In add
these points are connected by straight lines. (This can be relaxed, as in [6].) Howeve
3D not only must appropriate auxiliary points be defined, but surfaces must be fit throt
more than three points (therefore, not coplanar) in order to compute the surfaces of the :
volumes. The algorithm used here to calculate both volumes and surface area vectors
tetrahedralize polyhedra of arbitrary order so that the volume of any problem domain cai
formed in a general manner on an unstructured grid [5]. For concreteness this is illustrz
for the hexahedral zone shown in Fig. 2.

A hexahedral zone is divided into 24 tetrahedra, with two tetrahedra associated with €
of 12 edges. One of these tetrahedra is shown in Fig. 2 as described by theapaithts
The zone center poirttis defined as the average of the coordinates of the eight points t
define the hexahedron; the face center pdiig defined as the average of the coordinate:
of the four points that define a hexahedral face. This tetrahedron is exactly bisected to f
one with half the original volume as given by poimtiscd. This latter tetrahedron is used
to compute the following quantities: the vectBras the outward normal to the plane of
pointsby’, ¢, d and with the area of this triangle as its magnitude, the vek@s the outward
normal to the plane of pointg, b, d, or b, d, b’, and with magnitude of the associated
and equal triangular areas. The veckdnas added to it another vector from the additiona
tetrahedron located above the one shown (it also contains @gibts) to form the vector
defined aéba, which is the median mesh vector between pomgndb of zonez. There
are 12 median mesh vectors corresponding to the 12 edges of a hexahedral zone. The\
A forms one of the two vector pieces that make up the lower outward coordinate-line m
vectors of the lower face of poines andb of zonez. For a hexahedral zone there are
four such vectors for each of the six faces of a hexahedron, or three vectors from the
A,i=1---24, allocated to each point of zome(In 2D there are 4 median mesh vectors
é , and 8 coordinate-line mesh vecth(s for a quadrilateral zone; one of each is shown in
Fig. 1. The volume of tetrahedrai’cd is found aSS“ba . b75/3, whereais the vector from
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pointa to pointb’. This volume is added to the corner volume of both poingsdb. For
a hexahedron the corner volume thus consists of two such contributions from each of
three edges associated with every point. Therefore, after the 24 tetrahedra of a hexah
zone are computed as detailed, the median mesh vectors, coordinate-line mesh vector
corner volumes are known. (The zone volume is found simply as the sum of all of its cor
volumes.) The corner mass} is then calculated by multiplying the initial corner volume
by the zone density; likewiséyl, and M, follow from Eq. (1). For an unstructured grid
composed of arbitrary polyhedra one sweeps all edges of all zones and calculates the ¢
mentioned entities [5]. These fundamental quantities are the building blocks that define
control volume differencing that we employ. The rest of our underlying numerical algorith
is now introduced.

We begin by considering the conservation of total energy. This can be written as

Z M€, + Z Mpijf)/2= Boundary Work 2
z p

whereg, is the specific internal energy of zomeandv,, is the grid point velocity. Thus,
the internal and kinetic energies are defined in the zones and at the grid points, respect
For simplicity we neglect the boundary work term in Eq. (2), and take its time variation

> MAe + Y Mty - Al =0, ®3)
z p

whereA denotes the change of a quantity in a discrete time increment. Note that in obtair
Eq. (3) from Eq. (2) we have considered both zone and node masses to be constant.
Next, the force equation at poiptcan be written as

dvp, = -
Mp-gr=Fp=>_fl. ©)
z

In this equation we have defined a new objd?gt, that we call the corner force. This force
acts from zone and is applied to poinp such that if one sums all corner forces commor
to this point (these belong to the neighboring zones that contain this point as a vertex),
the total force acting on poim, pr, is obtained. The corner force, like the corner mass
is defined with two indices: one refers to the zone in which it is constructed, and the ot
indicates the point on which it acts. In our notatidﬂ'i: f%, except that we always sum
with respect to the lower index. The explicit functional form of the corner force is, as y:
undefined. How these forces are to be computed is discussed in Section 5.

Finally, the rate of work done by corner forces of any functional form (and thus, the char
in internal energy due to them) can be computed “compatibly” utilizing conservation
total energy. The main result is that the rate of exchange of kinetic energy from grid pc
p to zonez due to the corner forceQJ is simply the dot product of this force into the
velocity of grid pointp. This follows from Egs. (3), (4) after performing a discrete chang
of summation by parts and can be rigorously justified [1]. Thus, in general, the change
internal energy produced by the corner forc§§, of a given zone can be calculated by

>, f4- U /2At

Ae; = ,
74 M,

()
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whereAg, is the change of the specific internal energy of znirea time At, andﬁ’,‘;fl/2 is
the average o, at the old and advanced time levels. It is Egs. (2), (4), (5) that constitu
an algebraic identity for an arbitrary functional form of the corner force objé@;t,This
fact allows us to compute the work done by forces that are specified in discrete form i
generic manner utilizing Eq. (5), without the need of a continuum, undiscretized express
for the work they perform. This affords us the freedom needed to specify forces due
an edge-centered artificial viscosity, subzonal pressures, and subzonal deviatoric s
tensors. Operationally, by “compatibility” we mean that the work performed by all force
is computed using Eq. (5).

To complete the system of equations the pressure in a ®ynmust be specified. This
requires an equation of statB; = P(p,, €,), and thus the zone density, as well ase,
from Eq. (5). The zone density is found simply from the zonal mass as

Pz = Mz/V;(1), (6)

where the zone volum¥,(t) is computed from the zone coordinates at timas detailed
previously. Initial conditions fop,, V,, ande; in the zones, and velocity, at the points,
along with suitable boundary conditions, must be specified.

If EqQ. (6) is inserted into the continuity equation that expresses conservation of me
there results the equation for the evolution in time of a discrete Lagrangian volume elen
[3, 1]. This equation is

1dV,

V.3),= 2
( V)2 v, dt’

(7)
where the volume of a zoras a function of its defining coordinat&s(t) = V,(f1, >, . . .,

rn); theri =ri(t) depend on time, and = dr; /dt for the motion of a Lagrangian point.
What is essential to note is that by defining an explicit functional form for the zone volur
in terms of the grid point coordinates, the basic elements of the control volume differenc
scheme have been given. This follows from the fact that at the initial tWnev), is now
known directly from Eq. (7). FronV,(f; (t)) the grid vectorsS or A; can be derived (we
usually work the other way, from surface vectors to volume computation, but these
equivalent), and the grid vectors enable one to construct all discrete forces.

3. THE SYMMETRY PROBLEM

The basic problem in numerically preserving some special one-dimensional symme
in more than one dimension can be seen simply and intuitively by considering the diffict
with discretizing the pressure forces. A pressure acts normal to any surface, and thus
resulting forces at a grid point depend on the surrounding grid topology. In general, thi
arbitrary. Consider a sphere with some constant, nonzero pressure that is allowed to ex
freely into an external void. The forces calculated on the discretized initial boundary of |
sphere will not point in the radial direction because the net outward normal vector u:
to compute this force does not generally point radially. Thus, totally numerical deviatio
from spherical symmetry result. This defective property of the numerical scheme makes
distinction between physical departures from 1D symmetry due to physical perturbatic
and departures that are due solely to numerical error, difficult if not impossible to separ
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3.1. Grid Topology and Restrictions

It is not possible to achieve spherical symmetry on arbitrarily constructed grids. T
is because a prerequisite for symmetry preservation is that a spherically symmetric in
condition be perfectly represented by the initial grid construction; otherwise, numeris
perturbations are by necessity presentin the initial conditions, and departures from sphe
symmetry will always result. In the case where instability is possible they can act to se
its growth.

In Fig. 1 is shown a grid construction in 2D, with coordinate lines that are radial denot
by the logical indeX, and those that are angular by the logical intethe logical indexm
is common to all points of this figure and is used to denote the third dimension. All poir
that lie on a line with common indéxare at the same distance from the origin 0.

Initial conditions that correspond to spherical symmetry in 3D Cartesian geometry con
of density, specific internal energy, and thus pressure, that must be constant between ad;
lines of indeX (referred to ak-linesin 2D and-surfaces in 3D); and also, the initial velocity
must be constantin magnitude (possibly zero) and directed radially on d egueface. Two
additional requirements must be met. Fi(st, v), must be uniform between twelines or
I-surfaces. From Eg. (7) this implies that the fractional volume change, and thus the der
on the next timestep, will remain uniform betwelesurfaces. Second, the algorithm for
calculating corner volumes, and thus the initial Lagrangian corner masses, must be suct
the initial “radially directed” component of the force (computed using unmodified contr
volume differencing from the initially specified and symmetric pressure), divided by tl
nodal mass must have a constant magnitude alorigsarface. (The pressure gradient is
to be modified so that the tangential component of this force vanish, using the met
given in Section 4.) This last requirement places some mild restrictions on the choice
auxiliary points—the center point of a zone and of the zone sides betweérstwiaces in
3D. Generally, defining these points as the arithmetic average of the surrounding dynan
points will allow this requirement (uniform radial acceleration ot-anrface) to be satisfied
[2] for a reasonable surface interpolation between these auxiliary points and the dynan
points that define a zone.

If (V- 7), satisfies the symmetry requirement this underlying differencing scheme c
be modified so that spherical symmetry can be preserved, otherwise it cannot, and is
not useful for simulating such problems. This is because the procedure presented ir
next section that modifies how pressure gradients are computed leaves the original \
of (V - v), unchanged for an initially radial velocity field. This procedure modifies onl;
components of the surface vectors that are normal to a locally deduced radial flow direct
denoted a$. If (V - ), is symmetric the uniform radial acceleration condition mentione
earlier can always be accommodated.

In three dimensions thiesurfaces of Fig. 1 are cones revolved about the vertieadis,
while thel -surfaces consist of sets of points with the same spherical radius from the origir
we think of this grid as constructed using spherical coordind®e8,(¢), these correspond
to the logical indicesl(k, m), respectively. However, this type of grid is restrictive; in
3D Cartesian geometry there are many other ways to tessellate a sphere. We wish t
essentially unstructured grids for this purpose, except that they must be able to repre
spherical initial conditions exactly. The restriction that this places on our initial grids
that no piece of an-surface terminate. However, this is very mild. Thus the indices
andm can correspond to a completely unstructured grid with only fhelex as a logical
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coordinate. Therefore, when spherical symmetry is important, our initial grids consist
sets of points, each set with a common integer irldéixat have the same spherical radius
initially. Although this permits terminatedk(m) lines, in the rest of this development it
is assumed that this in not the case (this situation is discussed elsewhere [7]). Thus
|-surfaces always consist of the same number of grid points. Althoughltsestaces may
be unstructured, they all have the same topology so that each surface can be stretche
every other.

4. MODIFICATION OF THE GRADIENT OPERATOR

Here we present how the gradient operator is to be modified in order that spher
symmetry can be obtained. We are concerned with only that portion of the surface area
is constructed with respect to the logically structured part of the grid where the grid poi
are separated into logical surfaces, each labelled by the in&exch a situation is depicted
in Fig. 3 where the point “0” is shown connected to its nearest neighbors with solid line
each of these points has the same surface ihdé&khough four points that are nearest
neighbors to point O are shown in Fig. 3, in general the nearest neighbor set associ
with any given point will consist of three or more points. This number may vary across t
|-surface. The points shown in Fig. 3 as asterisks denote the center points of faces, an
midpoints of edges, of the polyhedra that compose the grid. The coordinates of the f
center points are determined as a simple average of those of the surrounding dynar
points with the same logical indéxThese points are joined by dashed lines that togethe
with the coordinate line connections form quadrilateral-like subplanes, each with a surf
area vector about the point 0 in Fig. 3, and Iabelledia;swherei =1...4.ltisthe sum of
these vectors about each point of the surfabat is to be modified so that symmetry can be
obtained. This is to be done for both the coordinate-surface and the median-surface pi
of the mesh associated with the logical indein the manner that is detailed next. Then
in Section 5 it is explained how forces are to be computed using these modified, direc
surface areas.

It is assumed that the points 0.4 all lie on the surface of a sphere of radasvith a
center point that has coordinates given by the veRtgrwith respect to an arbitrary origin

FIG. 3. Coordinate-line mesh about grid point O on a logical surface with ihd®glid lines connect nearest
neighbor grid points (solid dots). Vectoss are the piece of the gradient operator that is to be modified abol
point 0.
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of our coordinate system. These two quantities are unique only to the point O with its nea
neighbor point set. With respect to some other point on the $ssudace with its nearest
neighbor point set these quantities may be completely different. That is, we do not ass|
any common spherical center point or radius for the points on the logical suirfddeat
we seek, given only the coordinate locations of the points 8 (points Q... n with n > 3,
in general), is the unit vector that points in the outward normal direction to a sphere pla
through these points, either directly or in the least squares sense, at the point 0. Thi
label as the unit vectat. Then we modify the surface area vectdgsabout point 0 such
that when summed they yield a net resultant vector that is parallel to the diréction

The unit vectok, thus defined, can be computed as follows: First, the pointsrohave
known position vectors given bl?i, i =0...n (althoughn =4 in Fig. 3, this derivation is
kept completely general). Since these points are assumed to lie on the surface of a sj
with center point position vectdf?ctr, and with radius, we have that

(R —Rg)2=a2 fori=0...n. (8)

Next pomt 0 is singled out with respect to| its nelghbors by ertIR;gz Ro+ (R — Ro) =
RO + AR, o fori > 1, where the vectora Ro, = (RI — Ro) are known coordinate vector
lengths. Using this identity in Eq. (8) to repla& yields

(ﬁo - Iictr + AIii,o)z =a’ fori > 1. 9)

Next we substitute Eqg. (8) with=0 into Eq. (9) above to eliminate the dependence on th
spherical radiug? to obtain

2ARio- (Ro— Rey) = —(ARi g2 fori > 1. (10)
This result can be written in matrix form as
AX = b, (11)

where theith row of then x 3 dimensional matriA is given by the components of the
vector 2Aﬁ. 0=2[(X — X0), (Vi — Yo), (Z — 20)] =2[AX;, AY;, Az]; the 3x 1 column
vectorx of the unknowns has componentgd— xct,) (Yo— Yerr), (Zo— Zetr)], and then x 1
inhomogeneous data vectohas the entries (A R. 0)2. If n > 3 this system of equations is
over-determined. To obtain a unique solution it is multiplied by the transpose of the ma
A, denoted ad", to obtain

Ax =D, (12)
where
SLAXE  STAXAY S AXAZ
A=ATA =4 AYAX DAY DAYAZ || (13)
DAZAX Y AZ Ay, > AZ
> AX (AR 0)2
b=ATb=—-2| S Ayi(AR0)? | . (14)
> AZ (AR 0)?
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Here}; hastherange=1...n over the-surface nearest neighbors of point 0. This oper:
ation is equivalent to performing a least squares fit of a sphere to the set ofipsi@ts . n,
and thus leads to ax3 3 system of linear equations. The solution vector compongredse
given byx; = detA,-/detA, where deA is the determinant of the matri, and the matrix
A,- is formed from the matri>A by replacing thejth column ofA with the column vector
b. The jth component of the unit vect@rthat we seek, denoted as is given by dividing
eachx; by the magnitude of the vectay where|x| = (Zj?’zlxj?)l/z. Thus, our final result
for the components; is

¢ = detA, (=123 (15)

[ 231 (detA))? v
i=1 j

From Eqg. (15) it is seen that finding the directidmvolves only the computation of the
determinant of three 8 3 matrices at every grid point. This equation gives the directio
cosines of the outward normal to a sphere at the point O that is fit to the set of poi
i =0...n. If all of these points are coplanar the radius vea{ll%ds — Iictr) of this sphere
goes to infinity. Suppose all points lie in tiey plane so thatnz =0 for all i. Now not
only are both the third column and the third rowAfzero, but also the third entry in the
vectorb. Thus, the matriceé,- all have zero determinant and Eg. (15) for the component
cj becomes ill-defined. (Note that this does not occur if we hav@ and solve fox from
Eq. (11), since then only the third columnAfvanishes anth has all nonzero entries.)

It is important thatt never have all zero components or be determined by numeric
noise. To prevent this we develop the following procedure. First, note that the trAcs of
never zero since Tﬁ\) = Zi(Aﬁi)z. Also, only one eigenvalue @ can vanish since all
points about point O can become coplanar, but not collinear. We thus define a criteric
that indicates the vanishing of an eigenvalue&diy taking the cube root of the product of
its eigenvalues and dividing this by the average of their sum. Thus, we have

3(detA)/3 1030

5 o :
TRy T 2x2

(16)

If § is less than the RHS of the indicated expression above, whanel¢ are the effective
spherical angles of a given problem in radians, then we do not coropiitem Eqg. (15)
but instead calculate these components directly fhora= 0, as the eigenvector of the zero
(or nearly zero) eigenvalue &f. Now & is always well defined.

The coordinate-line surface mesh vectors are modified about the point 0 with resy
to the surface with logical indek so that the total gradient operat&,o with respect
to this surface,&T,osz{‘:fﬂi,o as seen from Fig. 3, has no component in the directiol
perpendicular té&. To this end we define the component of this vector that is perpendicul
to the directiors, denoted a\, o, by

ALo= Z Aio— Z(:&i,o -€)¢C. (17)
i—1 i—1

To remove this component frorﬁm we simply subtract equal portions of it from each of
the vectorsA o. Thus, the modified coordinate-line surface mesh vectors that we label
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AN are given by
A= Ao — (ALo/n) x(0), (18)

where x (0) is a function of point 0, defined in Section 6, that has a magnitude betwe
zero and unity. It is used to decide how much the ve@tpds should be modified. It is
importantto note that although the vecﬁl)‘{o = Z{‘zl,&% has no component perpendicular
to the directior€ wheny (0) = 1, each modified surface vectéﬁ"o generally has a nonzero
componentin this direction. Itis only the net sum of these vectors about point 0 that has k
eliminated. This is why this modification does not cause egregious changes to the orig
gradient operator. It is a subtle manipulation of the truncation error of the difference sche
in favor of spherical symmetry, and thus does not impose it when physically absent.

Finally, the median mesh vecto&o midway between twé-surfaces are also modified
in the same manner as that prescribed by Egs. (17), (18). This is necessary for obtai
symmetry when subzonal pressure forces, or forces due to deviatoric stresses, are discre
In this case the direction vectérused to modify these median mesh vectors is found b
simply adding the twa& vectors from the adjacehsurface points and renormalizing the
magnitude to unity.

5. CALCULATION OF FORCES

Itis now assumed that both the coordinate-line and median meshes along the desigr
[-surfaces have been modified with respect to the local direCtmnmeans of Egs. (15)—
(18). These surface areas are designateﬂi"ésﬂi if unmodified) when referring to the
coordinate-line mesh, and SE' (é if unmodified) when referring to the median mesh, of a
zonez (the subscript for point 0 is hereon suppressed). How the various forces that appe
our model are computed with respect to these two meshes is now detailed. The comput
of the corner force vectoﬂJ with respect to zone and pointp is given for pressure
and material strength forces. The edge-centered artificial viscosity force contribulﬁ?ﬁn to
is calculated from the unmodified median mesh vectras given in the Appendix of
[4]. (There are twelve separate viscosity force contributions from a hexahedral zone.)
corner forces are summed owsabout a fixedp to obtain the total forc& p Used to advance
velocity in Eg. (4). They are also used to compute the rate of change in internal energ
-2 f% . 5?,*1/2 in Eq. (5). Although the zones may be polygons of any construction, tt
specific case of hexahedrons is singled out. The generalizatiﬁfi tf the former case is
apparent.

5.1. Pressure Forces

The corner forcefq§=°(mp) due to the mean zone pressure “mp” in zarikat acts on
a point p=0 is computed using the coordinate-line mesh subsurface vedidiat are
associated with this point and zone; they are outwardly directed with respect to the volt
contained in zone. For a subzonal corner that is a quadrilateral there are three such vect
as shown in Fig. 4; thus this force is

fP=0(mp) = P,(As + Ao + AY), (19)

where P, is the mean pressure in zomeThe vectorAY lies along the-surface of the
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FIG. 4. Coordinate-line mesh corner stencil used for computing mean zone pressure f@?cbas been
modified for symmetry purposes.

point p=0 and the zone and has been modified by means of Eqg. (18). By defining th
direction of theA’s as outward normals, Eqg. (19) gives a control volume representatit
of the integral of the pressure foreeV P, when summed over all zones about pomt
Before modification of the vectof\g" for symmetry, this force could be calculated from
the median mesh vectors with inwardly directed normals with respect to the nodal volu
about pointp yielding the identical net result. However, once the symmetry modificatic
has been made these two prescriptions are no longer equivalent. Itis only the coordinate
mesh prescription that can be modified so that symmetry is preserved [2].

The continuity equation is employed to write both the momentum and internal enel
equations in Lagrangian form where the dengigjppears outside of the total time derivative
of both v, ande, [3, 1]. Thus, on a spatially staggered grid, for this algebraic step to t
valid one must define not only a conserved zone miisaind associated zone density and
volume evolution equations, but also a conserved point rivggsand point density and
volume evolution equations in an analogous manner. This latter step is of crucial importa
in that by then considering the spatial interrelatiotvfandM, by means of the common
corner massn?, one concludes than? must also be a constant, Lagrangian mass [3]
This leads to the formulation of subzonal pressure forces that stabilize the grid aga
spurious motions and prevent all grid overlap and tangling. Consequently, there is a diffe
density, and thus pressure, in each zone corner (eight pressures in a hexahedral zone
differencing of the forces due to these separate internal zone pressures is discussed at |
in [3]. This differencing is constrained by the requirement of conservation of momentu
but is not unique. However, when symmetry preservation is also required, only one fo
differencing is possible. The subzonal corner pressures are subtracted from the mean
pressure and treated as perturbations. This allows for a larger dynamic range throug!
introduction of a merit factor,® ¢, as defined in [3], that is generally of order unity or less.
These forces are small compared to the mean zone pressure forces throughout most ¢
computation. They become large to resist grid tangling, since if the corner volume of a z
becomes small its subzonal density, and thus pressure, becomes large. This produces:
that strongly resist grid collapse as well as spurious and unresolved grid motions, the I
often referred to as “hourglass” modes.
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FIG. 5. Coordinate-line and median mesh stencil of a zone corner about point 0 used for computing &
subzonal perturbed pressure forces, and material strength forces from subzonal corner deviatoric stresses. \
AY andSY have been modified for symmetry.

The subzonal corner perturbed pressure “pp” fof@éo(pp) at pointp =0 of zonez is
computed for a hexahedral zone as

. L 1 .
f2=0(pp) = (2M¢) |8Po (AL + Az + AY) + 5Py — 8P Syg
1 o 1 S
+ 5 (6P — P2 S0+ 5(8P0—8P3>S§”0 , (20)

where the coordinate-line mesh vect&is and the median mesh vectcﬁs are specified
as shown in Fig. 5. The first term on the RHS of Eq. (20) is the same as the corner pres
force from the mean zone pressure as given by Eq. (19); the other three terms are 1
contributions from the median mesh, wher® bf the total force on each median mesh
segment is allocated to each of the two grid points involved. The veémrand@g"o have
both been modified so that symmetry will be preserved if present in the computation.
contributions from the median mesh vecté_@ and ézo are both zero in this case, since
when symmetry is present all perturbed corner pressures are equal along an inner or an
portion of anl-surface. It is for this reason that this force differencing preserves symme
when present, and it is unique in this sense [3]. The perturbed subzonal corner pressul
azoneg P, are computed b§yP, = éz(pi — p)/v,wherep; is the subzonal corner density
calculated from the Lagrangian subzonal mass aigithe mean zone density calculated
from the Lagrangian zonal masé;z andy are the zone sound speed and the ratio of specifi
heats of the zone material, respectively.

In computing the timestep that is utilized in our calculations the effects of the mean zc
pressure and the artificial viscosity are combined. The scalar part of the artificial visco:
has the formp; C? along every edge of a zonez [4], whereC? is an effective viscous
sound speed squared. The maximum value ofAlin a given zone is added to the actual
zone sound speesz, as determined from the equation of state. The square root of this st
determines a generalized sound speed that is used to compute the CFL condition fo
zone; the minimum of this time for all zones determines the timestep. The time integrat
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scheme consists of an initial predictor step that advances all dependent variables from
leveln to time leveln + 1; this is followed by a single corrector step with forces re-centere
at then 4+ 1/2 time level.

5.2. Material Strength Forces

The construction of forces that arise from material strength presents unique difficultie
one wishes to preserve the limit of 1D spherical symmetry. The first task is to calculate
velocity gradient tensoV,; v; (defined in the zones) from which the traceless, symmetri
strain rate tensa; j is constructede ; =[Vivj + Vjvi]/2—6; ;V - v/3). Then the zone
deviatoric stress tensofs can be advanced in time [8]. (For a purely elastic materia
T[‘fl =T +2Ge | At, whereG is the shear modulus). The corner force that is applied t
a point from a given zone is then ju§tf ——T- A, whereA is the total outward normal
area vector of a corner volume of zon&ith respect to poinp. (For a hexahedron this is
composed of three coordinate-line mesh vectors, as shown in Fig. 4.)

As was noted in Section 3, the divergence of the velocity calculated in the zones by me
of our standard control volume differencing is consistent with 1D spherical symmetry, giv
a velocity field that is spherically symmetric. With respect to forces that originate fro
material strength, this requirement is that the eigenvalues of the tefigoos ¢; ; all be
equal between twb-surfaces (this is equivalent to a symmetric pressure), and that two
these eigenvalues be equal to each other (degeneratela@dhe value of the third). The
eigenvectors of the degenerate eigenvalues define a plane to which the third is the out
normal. For the zones inside twesurfaces these tensors can be transformed into ea
other by a similarity transformation and are thus all equivalent. This is the requirem
that must be satisfied for the 1D spherically symmetric limit to be attainable by our
numerical discretization. Unfortunately, we find that if we directly compute the strain rg
tensofe; j using 3D control volume differencing, and with a spherically symmetric velocit
field defined at the points, that the eigenvalues gfinside twol -surfaces are not equal to
roundoff error, and the curl of the velocity field (anti-symmetric pafiaf;) is not zero. This
is unlike the case of 2D Cartesian geometry [2] where control volume differencing result:
these conditions preserved to roundoff error level for an angular grid. Since the diverge
of the velocity is consistent with symmetry (a consequence of its being constrained by
volume relation Eq. (7)), it is still possible to obtain the symmetric 1D limit with 3D contrc
volume differencing. This is because the material strength forces in 1D appear as an add
to the forces deriving from the symmetric scalar pressure, and thus the compatible hee
resulting from them (and computed using Eq. (5)) will be symmetric. The first problem
that we must construct an alternative to control volume differencing to calculate the str
rate tensoe; j, and the resulting stress@s;, that will yield symmetric eigenvalues, and a
velocity field with zero curl, to roundoff error.

The solution to the problem just stated is to calculate the deviatoric stresses and
strain rates in subzonal corners (eight tensors per hexahedron instead of one) by mea
a finite difference technique that is detailed in the Appendix. These tensors will then h
eigenvalues that meet our above stated symmetry requirements. We now assume that
tensors are given and proceed to consider how the corner force that results from them
be calculated so that the 1D spherically symmetric limit can be achieved.

The proper control volume differencing of forces that are due to subzonal tensors that
piecewise constant in the corner volumes of zones can be constructed in a simple ane
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to how forces are constructed for subzonal pressures. Thus, from Eg. (20), we can sir
replace the multiplication of a scalar times a vector by the dot product of a tensor tin
a vector (also setM; =1) to arrive at the corner force acting on point 0 from subzone
material strength ms tensors in zanas

. = " " 1= = 5 1= = 5
fP=0my = —To- (AY + Ar+ Ap) — 5To=T1) So— 5(To—T2) - So
1= =_ .
= 5To=Ts) - Sk, (21)

Once again the coordinate-line mesh vect#yrsand the interior zone median mesh vectors
S, are directed with outwardly pointing normals to the surface of the subzonal volume
guestion. Because this sign convention gives - T, a minus sign has been inserted into
Eq. (21) to achieve the plus sign convention used for computing forces due to deviat
stresses. The vector%" and §§"o are the modified form of these vectors that are used t
obtain symmetry for pressure forces. Siné@ & /5\1 + 5\2) = —(§10 + égo + §30), Eq. (21)
(using unmodified vectors) is equivalent to calculating the force as an average of adja
tensors acting on the median mesh, or

fP0ms) = [(To+T1) - S0+ (To+T2) - S0+ (To+Ta) - al/2. (22)

andthusis avalid contour integral calculation of the force due tothese tensors. The remai
guestion is whether or not the force differencing given by Eq. (21) results in symmetry. T
we examine next. _

The deviatoric stress tens®, common to point O and to zoreas computed in the
Appendix can be written in diagonal form as

&t 0 0
0 0 —3./2 o1 Cor

where we use dyadic notation; the unit veoigrcoincides with the outward normal to a
sphere fit through point 0 and its nearest neighbors, as given in Section 4, when sphe
symmetry is present. The two vectdlig and &, - are perpendicular to this vector and
define the plane of the degenerate eigenvalugg2. Since all tensord common to a

given side of an-surface have these same eigenvalues (but different eigenvectors) wi
symmetry is present, we can examine Eq. (21) to see if forces at point 0 are aligned \
the direction ofy. It is clear that both the first and fourth terms on the RHS of this equatic
meet this requirementA; and A, lie totally in regions where the surroundifigs are

identical; To and T3 are along a commork(m)-line and have the same eigenvectors.)
However, it is not obvious that the second and third terms of Eq. (21) that represents
interaction with the two sides of the median mesh not alénwill yield forces in this

direction. Indeed, recall that for subzonal pressure forces these terms vanish becaus
pressures on either side é{o or égo are equal. Here the eigenvalues of the tensors ¢
either side of these vectors are equal, but their eigenvectors are different so that this
yields a nonzero force. To examine this we explicitly compute the second term on the R
of Eq. (21) for the total force exerted on the piece of the median rgskwe set the
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FIG. 6. Planar zone used to calculate subzonal material strength forces along median mé%ﬂa;ed@e@
is arbitrary.

factor of one-half to unity). This force can be analyzed using a local coordinate system
indicated in Fig. 6. Since there are two degenerate eigenvaluesﬁtsawe need only one
perpendicular vector to eaéhThe orientation of the median mesh vecas is chosen as
S = (a, 0, 0), where “&, vy, 2)” defines the respective local Cartesian components of ar
vector. From Fig. 6 we also have the relevant unit vedalges (—sinf/2, cosf /2, 0) and
its normaléy; = (cosh /2, sind/2, 0), as well as the vectog = (sin6 /2, cosd/2, 0) and
€11 = (cosf/2, —sinb /2, 0) that are necessary for the specificatioﬁT@f(éo — €1, etc., in
Eqg. (23)). R B

Given the above definitions and using Eg. (23), the total forc&gndenoted as-g ,
is given by

ﬁém =—[(To—T1 - Si0
= [~1(Eo - S10)€0+1/2(Co. - Si0) €or +A(E1 - Si0) €1 — A/2(E1s - Si0) Eil. (24)
Using the definitions of the vectors in Eq. (24), it can be written in the equivalent form

Ifém = axr[sind/2(—sin6/2, cosd/2) + sinb /2 (sinb /2, cosh /2) + sind /2 (0, cosh /2)]
= 3aArsing/2(0, cosh/2), (25)

where from here on the third index in our vector notation is suppressed; and, we have
that fact that

Ao = A R PO .
5[(Co¢ -510)C01 — (€11 - S10)€11] = ar cos8/2 (0, sind/2)
= a\sing/2(0, cost/2). (26)
Thus, it is seen from Eq. (25) that this force points in the direction of the averaigeaafi
¢;, and therefore the allocation of one-half of this force to points 0 and 1, as indicated

Eq. (21), will not result in spherical symmetry preservation. However, if we use the vec
relation

sinf/2 (0, cosh/2) = sind/2 %(sin@/z, cost/2) + %(—sin@/z, cost/2)|, (27)
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then Eq. (25) can be rewritten as

Fg,=Fog,TF15, = 3%’\[sin6>/2(—sin6?/2, cos9/2) + sind /2 (sind /2, cosd /2)].
(28)
Finally, we write the two terms that appear in Eq. (28) as separate forces
'Eo,ém = _g[(?O' S10) - & €o, (29)
'El,ém = +g[('F1‘ Si0) - &) &1, (30)

where the first equation is to be added to the corner force applied to point 0, and the se
to point 1. This decomposition divides the total force on the median mesh \é_@tmto
separat€, and¢; directed components and is found to result in symmetry preservation.
the above equations the fore Sdue to each tensor is calculated and then projected ini
the direction oft at the point in question. It is seen that the degenerate eigenvalues adc
extra factor of one-half that contributes to the force in the symmetry direction. Note tl
now only To contributes a force to point 0; and likewise, oﬁTy contributes a force to
point 1.

The above is valid when symmetry is present. However, when symmetry is not pres
this decomposition, valid for tensors with equal eigenvalues, is not exact, and contribu
one-half of the total force from vect&@io to each adjacent pointis a general and converget
prescription. Keeping this in mind we write the total material strength “ms” corner fore
on point 0 as a combination of Eq. (21) and Eq. (29) using the switgh (herep denotes
point 0) to obtain

- = v - = 1= =2, 1 = = .
fP=0mg) = —To(AY + AL+ A) — 5(To— Ts) - S — SlTo=Ta) - Sio
= = N 3 = N N
+(To—T2) - S](1— x(0) — E[TO - (S10 + S20) - €0] €ox (0), (31)

valid for ahexahedral zone and readily extended to arbitrary polygons. The above expres
is our final prescription for the corner force due to material strength acting from azone
a dynamical poinp calculated from subzonal deviatoric stress tensors, one in every cori
volume of a zone. Next, the function(p) that automates this and the other correctior
procedures employed to obtain symmetry is defined.

6. DETERMINATION OF x(p)

In all of the modifications that have been made to our standard control volume differenc
(Eg. (18) for constructing the modified mesh vect@tf% and S’V', Eq. (31) that defines
material strength forces, and Eqs. (38), (39) for computing corner strain rates), the qual
x (p), defined on the grid pointg has been introduced as a multiplicative factor that range
in value from zero to unity. This factor determines how much of the corrections necess
to preserve symmetry should actually be retained. The calculation of this factor at eac
the grid points is now given by means of an estimation of the variation in the curvatt
measured between the grid point 0 andhitsearest neighbors.
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The curvature vector between two points O anilat are on the same spherical surface
with a distance vectdrg = X; — Xg between them is found to be given by

¢ — G
lio- (& — €o)/ICi — Col

Kio = (32)

In 2D the vectord;o and € — €p) are always parallel when 1D spherical symmetry is
present, and the magnitudel@fo is equal to the inverse of the spherical radius to roundof
error accuracy. In 3D this is also the case independently of the placement of points if we
the projection ofio along the unit difference vector ofj(— &), as indicated in Eq. (32).
We are interested only in the magnitude of the vectors They are first used to construct
the mean value of the curvature at point 0. This is defindaoas Zi"zl | Kio|/n. Next, we
construct the root mean square of the deviation of the magnitude of the vﬁ@bctrtspoint

0. This is given by
" — 1/2
1 - [ IKiol-Ko\?
ms — —
K§ _lnE ( Ko ) . (33)

i=1

The quantityK [ is zero to roundoff error if the point 0 and its1earest neighbors all lie
on the same spherical surface. Otherwise, itis a positive number that measures the curv
variation about point 0. It is clear that if this number is too large our modifications to obte
a nonexistent spherical symmetry do not make sense and the original scheme shou
used about a given point. With this in mind we define the valug(q) at the pointp=0
by the set of relations

x(p=0) =10 (0 < K§™ < 0.01),
x(p=0) =10— (Kf™-0.01/0.09 (0.01< K™ <0.1), (34)
x(p=0) =00 (0.1 < K™s),

The breakpoints 0.01 and 0.1 in the above expressions are clearly somewhat arbitrary
ones that we have found to be reasonable. (For an ellipticity of 1.5 ahdallng of a
90° quadrant, as in the initial grid for the Schulz ellipse problem in 2D 7 varies
from 0.025 to 0.14 along arline.) The symmetry modifications introduced here shoulc
not be used at points about which significant variation in local curvature occurs; if the
modifications are used arbitrarily they can be large and lead to a reduction in both rob
ness and accuracy of the overall differencing scheme. The automation procedure pres
gives a dynamically determined, and locally pointwise, way to incorporate corrections t
capture symmetry into the framework of control volume differencing in 3D Cartesian,
2D cylindrical, geometry.

7. NUMERICAL RESULTS

Nextare presented a series of numerical examples that are chosen to show the effectivi
of the algorithm developed herein. This effectiveness is measured in terms of both the ak
to preserve 1D spherical symmetry when present, and to perform robustly while retain
accuracy when symmetry is absent. All work is calculated compatibly using Eqg. (5) sot
total energy is always conserved at roundoff error level. Unless otherwise noted, an ic
gas equation of state with=5/3 is utilized. The artificial viscosity always uses standarc
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FIG. 7. (a) Noh’s problem. Spherical wedge with angles =20 andA¢ =5°, density and velocity vectors
att =0.6. Symmetry modification on. (b) Noh’s problem. Spherical wedge with angtes 20° and A¢ =57,
density and velocity vectors at= 0.6. Symmetry modification off.
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parameter settings [4]. When the symmetry preserving corrections to the algorithm
turned on it is always in conjunction with the automation factor of Section 6; thus, the
corrections are dynamically adjusted. Although the algorithm constructed in this paper
be used with an unstructured grid, all problems are run on a test code that is constru
using a 3D, logically connected grid.

7.1. Noh's Problem

Noh’s problem [10] is initialized as a sphere of radius unity, with a density of unity,
specific internal energy of zero, and a velocity field that is directed radially inward wi
a magnitude of unity. A shock wave moves outward from the center of the sphere wh
the velocity is initially discontinuous. The density inside this outward moving shock wa
should have a value of 64.0 and the specific internal energy should be 0.5. Attihé
the shock wave should be at a major radius of 0.2.

In Fig. 7a the density contours with grid and velocity vectors (white heads and black ta
are shown at = 0.6. The grid shown is a spherical wedge of 1806 with angles spaced
at 20, and with 15 in angle¢ using three 5 zones; reflective boundary conditions are
specified at planeg = 0° and¢ = 15°. There are 101 equally spadedurfaces at the initial
time. The wedge is displayed at4bith respect to the viewer so that the outasurface can
be clearly seen. The symmetry modification of Section 4 is turned on. Perfect symme
of the density and specific internal energy is observed (roundoff error4el@ldecimal
digits), and the velocity vectors are perfectly radial. The density rises to about 61.2 with
shock front at about 0.21 at this time. The usual overheating difficulty at the center tha
unavoidable with this problem is visible. Figure 7b shows the result for this problem wi
the corrections for symmetry turned off. The distortions of both the density contours &
velocity vectors are clearly seen. The density rises to a value of 70 in some places dt
grid distortion.

7.2. Self-Similar Implosion

This problem has an analytical solution; it has been studied by numerous authors [
13]. A sphere with initial unit radius, unit density, and zero internal energy is driven |
an inward radial velocity that is specified at the boundary. This radial velocity has a til
dependence that is calculated from a self-similar solution expressed as the answer 1
ODE problem [13]. An approximate form for this expression as well as the radial dens
profile at timet = 0.8 is given in [2]. The shock converges at the origin of the sphere
t =0.75 and the density should be flat at about 9.5a20.8 the outward propagating radial
shock should be at a radius of about 0.11, and with a density peak of 31.5. We empilc
grid with 101l-surfaces. The outer 90 intervals are equally spaced in radius, while the in
10 are increased in size by a constant factor of 1.05 (ratio zoning). We use 30 angle
the interval O< 6 < 7 whose spacing is determined by choosing equal intervals ifi;cos
two 15 angles inp are used to form a 3@vedge. The nonuniform adjustments in the grid
are utilized to keep the timestep from decreasing too much in the course of the simulat
Reflective boundary conditions are applied onghe 0° and¢ = 30° planes. Modifications
to obtain symmetry are turned on.

The grid and density contours of this simulation at time0.8 are shown in Fig. 8a. A
density peak of 32.5 is achieved at a radius of about 0.1, very close to the known solut
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Spherical symmetry is preserved to the level of roundoff error. The central regionxefzhe
plane of this result is shown in enlarged form in Fig. 8b. Next, this same simulation is r
with the symmetry corrections turned off. The grid with density contours ixtzelane,
and enlarged about the center of convergence, is given in Fig. 8c. Here the subzonal pre
forces are still on, but we note the substantial grid distortion that occurs relative to Fig.
Finally, if this simulation is run without either symmetry correction or subzonal pressu
forces the result obtained is shown in Fig. 8d. The grid is extremely distorted and the rec
inside thd = 2 surface is smashed into a pancake-like region. If this simulation is run wi
symmetry corrections, but without subzonal pressure forces, then the results are essen
identical to those of Figs. 8a, 8b. That is, subzonal pressure forces are not needed to o
correct results for symmetric problems where the initial grid matches this symmetry. Tt
sometimes (but not always) help maintain grid integrity if symmetry corrections are r
used, but are not the solution to the symmetry problem. If the subzonal pressure force:
not also constructed to preserve symmetry, then their use with mean zone pressure f
that are symmetry preserving will substantially damage the solution.

We note that the radial distributions of density for both of the preceding problems :
close (three digits) to those published using 2D cylindrical geometry [2, 4] with standard v
cosity settings and control volume (as opposed to area-weight) differencing with symme
modifications.

7.3. Skewed Piston

One-dimensional shock tube problems have long been used to assess the robustne
accuracy of numerical schemes in both one and two dimensions. This is extended to t
dimensions. Here a piston with a square base of length 0.1 on a side and a height o
is constructed; 1& 10 zones compose its base and 100 zones are used along its hei
However, the grid lines of this volume are skewed with respect to each other. The en
grid is specified by the formulas

x=.01(1 -1)+.01(11—k)(6 — m)/5sin(.01z (I — 1)) forl<m<§6,
x =.0141 — 1) + .04k — 1)(m—6)/5sin(.0lz (I — 1)) for7<m<11,
y =.01(m— 1),
z= .01k - 1),

(35)

where the height of this grid is along tRalirection, and the rangeskfindl are 1<k <11
and 1<| <101. A side view is shown in Fig. 9a. Its construction is based on generalizil
the Saltzman piston grid in 2D [14, 3] in the following manner: the- 1 surface, shown
as the top face of Fig. 9a, is the original 2D, skewed Saltzman grid; this grid is additione
skewed with respect tm-surface number into its opposite parity at tine=11 surface
(bottom face and hidden in Fig. 9a). Tire= 6 surface is thus not skewed at all.

The initial density is unity and specific internal energy is zero. Reflective bounds
conditions are applied to the four rectangular sides. At the bottom square face a velocit
unity is specified in th& direction; at the opposite square face the velocity intl&ection
is set to zero. The shock wave hits this latter face at timd.75; the density should be
equal to 4.0 in the singly shocked region and equal to 10.0 in the doubly shocked rec
that results after=0.75.
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FIG. 8. (a) Self-similar implosion. On-axis center of convergence, density contours, and dricl (8.
Symmetry modification on. (b) Self-similar implosion. Density contours and grid=¢.8 in the x—z plane,
enlarged about center of convergence. Symmetry modification on, subzonal pressure forcespwiti0.

(c) Self-similar implosion. Density contours and grid at 0.8 in thex—z plane, enlarged about center of conver-
gence. Symmetry modification off, subzonal pressure forces orwiit 1.0. (d) Self-similar implosion. Density
contours and grid at= 0.8 in thex—z plane, enlarged about center of convergence. Symmetry modification of
subzonal pressure forces off.
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This problem is run with symmetry modification turned on; tksurfaces are approx-
imately normal to the flow direction for the initial grid of Eqg. (35), so this makes sens
However, the curvature deviation fact§f™ is found to be about unity over all points of
the grid att = 0., and thereafter in time. Thus, the results shown next are the same as tt
obtained without this modification. Since the default for this algorithm is to always ha
the symmetry corrections active, it is important that the automation procedure of Sectic
turn them off continuously as distorted grids develop in time, or are decreed initially.

The grid and density contours of the same two faces visible in Fig. 9a at tinfe0
are shown in Figs. 9b and 9c at tirhe- 0.8, where in the former case subzonal pressur
forces are employed with¢ = 1.0, while in the latter case these forces are turned off. Th
density in the latter case peaks at 23, but is clipped so that an easier comparison ce
made. The extreme grid distortion and consequent density perturbations that occur v
subzonal pressure forces are not utilized are clearly evident in Fig. 9¢, while Fig. 9b sh
only very modest grid distortion and density variation from the true solution. Indeed, in tl
latter case the final grid over which the shock has propagated is mostly straightened ou
is much less skewed than the initial grid.

7.4. Blake’s Spherical Elastic Wave

This problem tests the algorithm when material strength forces (purely elastic in t
instance) are present and dominant in determining the solution. The geometry is a ho
sphere with an inner radius of 10 meters that is surrounded by an outer elastic materi
pressure that varies gs= exp(—t) in time is applied to this inner surface and an elastic
wave propagates radially outward [15]. (Units are in (cm/kg/ms) so that pressure is
kb.) The elastic medium has a shear moduBus- 125 kb, and an unperturbed density
po=0.002 kg/cn?. The equation of state of this elastic medium is given by

o— ﬁm<£>, (36)
3 Po

and with a constant sound speedco£ 500 cm/ms.

Our initial grid is constructed using spherig&, 6, ¢) coordinates with the inner radius
at 10 meters, outer radius at 30 meters, and divided into 80 zones that are 25 cm in ler
We choose 45angular zoning in bothh and¢ and use two angular zones in each angle t
cover one octant of a sphere. Reflective boundary conditions are applieckte-they =0,
andz = 0 planes of this spherical octant. The problem s run to atim@.0 ms. The elastic
force contribution is computed in two different ways. First, with all symmetry correctior
on the elastic force contribution is calculated from stresses that are defined in corner
detailed in Subsection 5.4, Eq. (31), and with strain rates calculated by the finite differe
procedure of the Appendix. Second, with all symmetry corrections off, the elastic forc
are computed from zone-centered stresses using zone-centered strain rates calculate
the control volume procedure of the Appendix. In this instance the material strength cor
force of Eq. (31) consists of only the first term on the RHS that involves the coordinate-li
mesh surface vecton§ .

The grid with pressure contours and velocity vectors is shown atttin20 ms for the
first case—symmetry corrections on—in Fig. 10a. (This is viewed from behind the origil
The velocity vectors are radial and the pressure profile exhibits spherical symmetry
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FIG. 9. (a) Skewed piston problem. Initial grid with constant shear along ttheection; facesz = 0.0 and
z=0.1 (hidden) are skewed with opposite parities but equal magnitudes. (b) Skewed piston problem. Grid
density contours at timé= 0.8, subzonal pressure forces on with merit fackbr =1.0. (c) Skewed piston
problem. Grid and density contours at titne 0.8, subzonal pressure forces off.

roundoff error accuracy. The same results for the second case—symmetry corrections ¢
are displayed in Fig. 10b. Substantial departures from symmetry in both the pressure pr
and the velocity vectors that are not along coordinate axes are clearly visible. Since th
basically a wave, the actual grid motion is slight; thus, noticeable grid distortion does |
occur and subzonal pressure forces cause negligible changes. The actual grid motion at
velocity profile as a function of radial position is shown in Fig. 10c, along with the analytic
solution obtained from Blake [16], for the case where the symmetry preserving algorit
was used. Agreement is seen to be good and can be directly compared to the results gi\
Fig. 3 of Ref. [15]. With symmetry corrections the results show no sensitivity to the size
the ignorable angles. Without symmetry corrections these results, along various radial
lines, depart significantly from each other and from the true solution. The solution giv
by Blake reduces the equations to potential form and thus allows no oscillations of
variables; the comparison here, although close to this solution, is computed with a w
code.

8. CONCLUSIONS

A numerical algorithm has been developed that demonstrates the effectiveness o
Lagrangian description for the numerical solution of problems with moderate to high fl
speeds in three-dimensional geometry. The difficulty of anomalous grid distortion &
spurious vorticity generation that limits these methods in 2D, and that is expected to be n
severe in 3D, is found to be well controlled by the presence of multiple zone pressures
produce stabilizing forces that mitigate this problem. An edge-centered artificial viscos
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FIG. 10. (a) Blake’s elastic expansion wave. One octant of a spherical grid witaddes in botl® and¢,
25 cm radial zones. Grid with pressure contours and velocity vectars 8t0 ms. Symmetry modification on.
(b) Blake’s elastic expansion wave. One octant of a spherical grid witlad&les in botl® and¢, 25 cm radial
zones. Grid with pressure contours and velocity vectots=a2.0 ms. Symmetry modification off. (c) Blake’s
elastic expansion wave. Radial distributions of veloeifyand displacemem\ R, att =2 ms. Solid curves are
numerical solution; dashed curves are analytic result. Symmetry modification on.
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that is effective in resolving shock disturbances in 3D is utilized. This viscosity, by mea
of a simple limiter procedure, is able to reproduce the desirable effects of Riemann prob
solutions along each edge of each zone without the complexity that the latter entail. -
heretofore unsolved problem of perfectly preserving 1D spherical symmetry in 3D Cartes
geometry has been solved by the use of a judiciously chosen set of modifications to
surface vectors that compose the underlying control volume scheme. These change
automated in such a way that the robustness of the original control volume schem
not degraded when such symmetry is not a good approximation. This property of

algorithm allows for 3D perturbation studies of spherical problems to be performed with
pollution from numerically generated errors—a subject of future work. The framework
compatible differencing has been used to construct this algorithm. This is necessary in
to include the desirable effect of forces that do not have ready continuum analogs that
be directly differenced and also provides a solid mathematical underpinning for this wc
Although the Lagrangian description has fundamental limitations in that problems w
nearly pure velocity shear (e.g., Kelvin—Helmholtz instability) cannot be simulated, otf
instabilities such as Rayleigh—Taylor unstable flow can be carried far into the nonlin
regime without premature grid tangling [17]. In addition, the algorithm presented can

used as the Lagrangian step of an overall ALE technique for situations where advectio
fluid is essential to an accurate solution.

9. APPENDIX: CALCULATION OF STRAIN RATES

Two different techniques are presented for computing the nine components of the velo
gradient tensoV; v; that are needed to advance the material deviatoric stresses in time,
to compute the rotation rate by means of the curl of the velocity field.
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9.1. Control Volume Computation

Suppose that a given zone is definediyrid points on which velocity and position are
specified, and that this zone has a volwheas calculated from subzonal tetrahedralizatior
or some other specified interpolant. Then this zonerhasrners each with an outward
normal vectorAp that is also computed along with the specificatiovaf(In Fig. 4, Ap at
corner pointp = 0is given byAp o=Ar+ As + As. ) Then the control volume computation
of the of the nine spatial derivatives of the velocity field defined in zoisegiven by

Vivj = <Zm,pvj>/vz, (37)
p=1

where the sum is taken over all corners of zarmad both, j range from 1 to 3 indicating
thex, y, andz components, respectively. This is completely analogous to the vector fo
of control volume differencing given in 2D in Appendix A of [1].

9.2. Finite Difference Computation

In order to compute the strain rate tenspf in a manner that yields the symmetry
condition of uniform eigenvalues in all zones adjacent to a condrsomface, and represents
irrotational flow accuratelyY x v = 0 to roundoff error level), we use the following finite
difference procedure to calculate the velocity gradient teWsoy in each corner of every
zone. First, we define three edge vectors that describe a corner that is common to a pc
and a zone using points 1-0, 2-0, and 3-0 as shown in Fig. 4. We denote the edge vec
between these three sets of pointst®, AX,, andAXz, respectively, wherax; andAX,
are specified in terms of points 0, 1, 2 that are assumed to lie on a cotrsndiace. These
vectors are defined as

AXy = (X1 — Xo) — [(X1 — Xo) - €]Cox (0),
AXz = (X2 — Xo) — [(X2 — Xo) - €o]Cox (0), (38)

AX3 = (X3 — Xo),

where¥; is the position vector of poirit. For the two vectorsAX; and AX, along anl-
surface we subtract off the component that is parallel to the outward normal dirégtbn
point 0. Thus,AX; and AX, are both perpendicular taX3, but not with respect to each
other, when symmetry is present. (Like all other corrections performed to obtain symmée
this is automated by the functign(p) as defined in Section 6.) Likewise, we denote the
edge velocity vectors a&v;, Avy, andAvs. These are similarly defined by

AV = (V1 — Vo) — [(V1 — Do) - Co]Cox (0),
Avy = (V2 — Vo) — [(V2 — Do) - Co]Cox (0), (39)
Avz = (V3 — Up).

In our notationAX; = (AXy, Ays, Azy) and Av; = (Aviy, Avyy, Avy,), etc., as defined
above.
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Using these vectors we can write three sets of three equations in three unknowns wl|
solution yields the nine differential components of the velocity gradient tensor in the cor
considered. The first set of these, which deternling ax, dvy /3y, anddvy/dz, is written

out below as
avx a‘UX av)(
= AXy+ | — A1+ | — AZy = Avyy,
X c.p ay c,p 9z ¢.p
ov dv av
<X) AXp + (X> Ays + (X> AZ; = Avyy, (40)
X c,p ay c.p az c.p

vy JdVx dVx
—_— AXz+ | — Ays+ | — AZz = Avszy,
X 6p oy 6 p 0z 6 p

where the subscript&, p) designate that these derivatives are defined in the caroér
the zonez with respect to poinp. By construction these equations are always linearl
independent. The additional two sets of three equations are obtained by lgtting,
andvy, — v, in the above. If more than three surface vectors define the corner of a giv
zone, then the sets of equations given above are over-determined. However, only one v
will lie betweenl-surfaces AX3 and Avs in the above) so that these sets of equations ca
be solved by multiplying by their matrix transpose, yielding a well-defined least squal
solution.

Given the nine partial derivatives of the velocity gradient tensor calculated as indicate
is found that for a spherically symmetric velocity field (specified on sets of points distribut
in space in a manner consistent with that described in Section 3), that the eigenvalyes o
are equal on a common inner or outer layer of-anrface, an& x v =0, to roundoff error
level. In addition, the eigenvector of the principal eigenvalug gdefined about point 0 is
identical with&. These tensors are thus aligned properly for a force calculation by mee
of the control volume procedure detailed in Subsection 5.4. Except for initial debuggi
purposes, the eigenvalues of the tengpysor T; ; never need to be computed.
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